
‭NanoGPT Experiments | Builders Blog | Feb 2025‬

‭For this task I decided to test various modifications to the‬‭nanoGPT‬‭repo related to training,‬
‭model architecture, and dataset preparation. For the majority of experimental runs I trained the‬
‭model with an‬‭A100 (40 GB SXM4) on Lambda Labs.‬‭For‬‭one subset of my conditions, which‬
‭I will indicate further in this section, it was necessary to use an‬‭H100 (80 GB PCIe)‬‭instead.‬

‭Below, I am also attaching my annotated copy of the recommended reading for this section:‬

character_level_language_modeling_with_deeper_self_attention.pdf

‭Regarding the note on reporting loss in terms of bpc instead of nats, I addressed this by dividing‬
‭losses by a scale factor of‬‭ln(2)‬‭in the‬‭train.py‬‭file of‬‭nanoGPT‬‭.‬

‭losses = estimate_loss()‬

‭# Convert loss from nats to bits‬

‭train_bpc = losses[‬‭"train"‬‭] / math.log(2)‬

‭val_bpc = losses[‬‭"val"‬‭] / math.log(2)‬

‭IMPLEMENTATION‬

‭The training runs I have conducted are a combination of the 5 experimental conditions below.‬

‭BASE‬ ‭nanoGPT exactly as is with the‬

‭exception of reporting loss in bpc‬

‭ROPE‬ ‭Replace position embeddings with‬

‭rotary position embeddings‬

‭TIPA‬ ‭Save reverse character mappings in‬

‭dataset curation, utilize during‬

‭training and then forward pass‬

‭DEEP‬ ‭Increase layers: 16 -> 32,‬

‭increase context length: 256 -> 512‬

‭SubData Pre/Post Training Scheme‬ ‭1.‬‭Pre-train the base model for‬

https://drive.google.com/file/d/1otV1p7ZY0YK1kY4dHgFJMXzHRrMbVuAY/view?usp=sharing
https://arxiv.org/pdf/2104.09864
https://arxiv.org/pdf/2411.17679
https://arxiv.org/pdf/1808.04444

‭some number of steps on‬

‭original enwik8 dataset‬

‭2.‬‭Sequentially fine-tune on 16‬

‭“expert” subsets of enwik8‬

‭3.‬‭Post-train for a small number‬

‭of steps on original enwik8‬

‭My motivation for each of these conditions was as follows.‬

‭ROPE‬

‭After its introduction, ROPE has been a commonplace implementation in place of position‬
‭embeddings in transformers. It is currently a part of the transformer architecture for LLaMA‬
‭models, as seen in the attached diagram.‬

‭[Diagram originally from‬‭lightning.ai/fareedhassankhan12‬‭]‬

‭TIPA‬

‭Token Internal Position Awareness (TIPA) is introduced in the paper “Enhancing‬
‭Character-Level Understanding in LLMs through Token Internal Structure Learning” by‬‭(Xu et‬
‭al., 2024)‬‭. It hopes to address the limited understanding‬‭of character positions within tokens,‬
‭especially in tasks like Chinese Spelling Correction (CSC) where character-position within‬
‭tokens is more critical than in English language tasks. The paper implements an algorithm that‬

https://lightning.ai/fareedhassankhan12/studios/building-llama-3-from-scratch?section=featured

‭“capture character positions within tokens by training them on reverse character prediction tasks‬
‭using the tokenizer’s vocabulary”‬‭(Xu et al., 2024)‬‭.‬

‭While I will not be using a tokenizer since this task’s focus is character-level modelling, my‬
‭TIPA implementation still draws inspiration from the original paper. Below, I’ve included a‬
‭pseudocode diagram for the modified data curation. Note, large parts of this remain very similar‬
‭to Karpathy’s initial‬‭prepare.py‬‭file.‬‭From here,‬‭these reverse character mappings are used‬
‭to define additional linear layers in the model architecture.‬

‭DEEP‬

‭My implementation of deeper networks was straightforward: I increased layer depth from 16 to‬
‭32 and context length from 256 to 512. Note, increasing layer depth exceeded my VRAM‬
‭capacity on the A100, so I ran my experiments related to deeper networks on one‬‭H100 (80 GB‬
‭PCIe)‬‭via Lambda Labs.‬

‭SubData Pre/Post Training Scheme‬

‭This strategy is essentially a “macro-level” Mixture of Experts fine-tuning run on top of a‬
‭pre-training of the base nanoGPT. Specifically, I intend to categorize the enwik8 dataset into 16‬
‭learned subsets by subject matter. The subset categories are first learned through an iterative‬
‭sampling process from the original dataset. 50 random samples from enwik8 are passed to an‬
‭LLM, and the LLM assigns a 16-subject categorization to that sample content. This is repeated‬
‭for 20 rounds, for a total of 320 (theoretically overlapping) subject categories. A final LLM call‬
‭is used to extract the 16 most prominent subjects from that list of 320 overlapping subjects. Once‬
‭the final categories are determined, the entire enwik8 dataset is split into reasonably-sized‬
‭chunks and sorted into the 16 categories.‬

‭As a sanity check, both the original enwik8 dataset and a concatenation of the 16 subclasses‬
‭were found to be of length 99,621,832 characters. This ensures all data from the original‬
‭enwik8 was sorted into a category.‬

‭I have published my enwik8-categories16 dataset on Hugging Face here:‬

‭https://huggingface.co/datasets/Shivamkak/enwik8-categories16‬

‭The 16 learned categories:‬

‭History‬ ‭"Events, figures, and periods‬

‭significant in human history."‬

‭Science‬ ‭"Scientific disciplines,‬

‭discoveries, and research."‬

‭Technology‬ ‭"Technological advancements,‬

‭devices, and computing."‬

‭Arts and Literature‬ ‭"Artistic movements, visual arts,‬

‭literary works, and authors."‬

‭Geography‬ ‭"Geographical locations, features,‬

‭and regional studies."‬

‭Politics and Government‬ ‭"Political systems, events, leaders,‬

‭and governmental structures."‬

‭Economics and Business‬ ‭"Economic theories, business‬

‭practices, and financial systems."‬

‭Religion and Philosophy‬ ‭"Religious beliefs, practices,‬

‭philosophical ideas, and thinkers."‬

https://huggingface.co/datasets/Shivamkak/enwik8-categories16

‭Health and Medicine‬ ‭"Medical practices, health‬

‭conditions, and healthcare systems."‬

‭Culture and Society‬ ‭"Cultural practices, societal norms,‬

‭and social dynamics."‬

‭Sports and Recreation‬ ‭"Athletic activities, events, and‬

‭recreational pursuits."‬

‭Education and Academia‬ ‭"Educational systems, institutions,‬

‭and academic research."‬

‭Language and Linguistics‬ ‭"Languages, dialects, and studies‬

‭in linguistics."‬

‭Military and Warfare‬ ‭"Military history, strategies, and‬

‭defense systems."‬

‭Entertainment and Media‬ ‭"Film, television, music, and other‬

‭forms of entertainment."‬

‭Biographies‬ ‭"Life stories and achievements of‬

‭notable individuals."‬

‭The training structure then follows as such:‬

‭1.‬ ‭Pre-train a model on the original enwik8 dataset for X steps‬

‭2.‬ ‭Sequentially fine-tune for Y steps on each of enwik8 sub-datasets‬

‭3.‬ ‭Determine which of the subject fine-tuning runs yields the most‬

‭performant checkpoints‬

‭4.‬ ‭Post-train on best-in-class subject fine-tunings with original enwik8‬

‭Heuristically, this approach hopes to learn “expert” subnetworks from each sequential‬
‭fine-tuning run on the sub-datasets, and then relearn the dependencies between these expert‬
‭subnetworks through the final post-training run on the original dataset.‬

‭RESULTS‬

‭Below, I’ve curated the validation loss for the best-performance checkpoint for each experiment:‬

‭Experimental Condition‬ ‭Best Validation Loss in BPC‬

‭BASE + Expert Fine-Tune : Science‬ ‭1.075‬

‭DEEP + Expert Fine-Tune : Philosophy‬ ‭1.125‬

‭BASE + Expert Fine-Tune : Philosophy‬ ‭1.126‬

‭DEEP‬ ‭1.359‬

‭BASE + Philosophy Post-Train‬ ‭1.390‬

‭DEEP + Expert Fine-Tune : Government‬ ‭1.392‬

‭BASE + Science Post-Train‬ ‭1.417‬

‭BASE‬ ‭1.429‬

‭ROPE‬ ‭1.429‬

‭TIPA‬ ‭1.460‬

‭ANALYSIS & NOTES‬

‭It was very exciting to see my expert fine-tuning scheme perform to the extent that it did with the‬
‭science category fine-tuning validation loss of 1.075 far exceeding that of the base‬
‭implementation at 1.429. However, this scheme certainly did not perform as I initially‬
‭hypothesized. The sequential nature of the fine-tuning runs was expected to aggregate‬
‭information in newly learned subnetworks; this did not seem to be the case, as the‬
‭best-performing fine-tuning runs were very close to the start of the process. In fact, the‬
‭best-in-class science category was second in the list of sequential runs, and all subsequent‬
‭learnings from other category fine-tunings only seem to have reduced performance.‬

‭Further, it was interesting to see that while the deep network outperformed the base network,‬
‭none of the deep expert fine-tuning runs were able to outperform the best-in-class science‬
‭fine-tuning run on the base model. For this reason along with the fact that the post-training‬
‭process failed to improve validation loss for any of the base model fine-tuning runs, I decided‬
‭not to conduct any post-training experiments for fine-tuning runs off of the deep model.‬

‭I was very optimistic about performance for TIPA, as it seems to be a very intuitive idea to train‬
‭on both forward and backward positional relationships. I still fear that my implementation of the‬
‭TIPA Module fails to utilize the reverse character mappings in a way that is actually conducive‬
‭to learning better network representations. I say this because these reverse character mappings‬
‭were simply used in a linear layer. Future work on this task would be very well spent improving‬
‭the use of the reverse character mappings in model architecture and loss estimation.‬
‭Heuristically, however, it does make sense that reverse character mappings may not be as useful‬
‭in a character-level language model: if the task at hand is next-character prediction, learning the‬
‭dynamics of previous-character prediction may not be the most optimal use of the language‬
‭model.‬

‭Overall, I really loved this task. Once again, I would really like to thank Andrej Karpathy. Truly‬
‭the G.O.A.T. His educational resources made this task very straightforward for someone with‬
‭very little prior experience in training language models.‬

