NanoGPT Experiments | Builders Blog | Feb 2025

For this task I decided to test various modifications to the nanoGPT repo related to training,
model architecture, and dataset preparation. For the majority of experimental runs I trained the
model with an A100 (40 GB SXM4) on Lambda Labs. For one subset of my conditions, which
I will indicate further in this section, it was necessary to use an H100 (80 GB PCle) instead.

Below, I am also attaching my annotated copy of the recommended reading for this section:
B character level language modeling with deeper self attention.pdf

Regarding the note on reporting loss in terms of bpc instead of nats, I addressed this by dividing
losses by a scale factor of 1n (2) in the train.py file of nanoGPT.

losses = estimate_loss()

train_bpc = losses["train"] / math.log(2)
val bpc = losses["val"] / math.log(2)

IMPLEMENTATION

The training runs I have conducted are a combination of the 5 experimental conditions below.

nanoGPT exactly as is with the
exception of reporting loss in bpc

Replace position embeddings with
rotary position embeddings

Save reverse character mappings in
dataset curation, utilize during
training and then forward pass

Increase layers: 16 -> 32,
increase context length: 256 -> 512

SubData Pre/Post Training Scheme 1. Pre-train the base model for

https://drive.google.com/file/d/1otV1p7ZY0YK1kY4dHgFJMXzHRrMbVuAY/view?usp=sharing
https://arxiv.org/pdf/2104.09864
https://arxiv.org/pdf/2411.17679
https://arxiv.org/pdf/1808.04444

some number of steps on
original enwik8 dataset
Sequentially fine-tune on 16

“expert” subsets of enwik8
Post-train for a small number
of steps on original enwik8

My motivation for each of these conditions was as follows.

ROPE

After its introduction, ROPE has been a commonplace implementation in place of position

embeddings in transformers. It is currently a part of the transformer architecture for LLaMA
models, as seen in the attached diagram.

Transformer LLaMA 3 and 2 Mistral
[]
N
[e |
: i
=] i
[e] :
& Mx
o~
%5 v o
Feature Plain Transformers LLaMA 3 and 2 Mistral
Single Layer +
Architecture Encoder-Decoder Single Layer Enhancements
Rotary + Additional
Positional Encoding Standard Rotary Innovations
RMS Norm + Enhanced
MNormalization LayerNorm RMS Norm Mechanisms

Attention Mechanism

Self-Attention

Grouped Multi-Query
Attention

Sliding Window
Attention

Memery Efficiency

NIA

KV Cache

Rolling Buffer KV Cache

|Activation in Feedforward

RELU

SwiGLU

SwiGLU + Mixture of
Experts

[Diagram originally from 1ightning.ai/fareedhassankhanilZ2]

TIPA

Token Internal Position Awareness (TIPA) is introduced in the paper “Enhancing
Character-Level Understanding in LLMs through Token Internal Structure Learning” by (Xu et
al., 2024).Ithopes to address the limited understanding of character positions within tokens,
especially in tasks like Chinese Spelling Correction (CSC) where character-position within
tokens is more critical than in English language tasks. The paper implements an algorithm that

https://lightning.ai/fareedhassankhan12/studios/building-llama-3-from-scratch?section=featured

“capture character positions within tokens by training them on reverse character prediction tasks
using the tokenizer’s vocabulary” (Xu et al., 2024).

While I will not be using a tokenizer since this task’s focus is character-level modelling, my
TIPA implementation still draws inspiration from the original paper. Below, I’ve included a
pseudocode diagram for the modified data curation. Note, large parts of this remain very similar
to Karpathy’s initial prepare.py file. From here, these reverse character mappings are used
to define additional linear layers in the model architecture.

Algorithm 1 TIPA Character-Level Language Model Data Processing
Ensure: processed training data, val data, test data with TIPA mappings

Directly from Karpathy’s original nanoGPT
Function CreateCharacterMappings(data):
chars <+ sort(unique(data))
vocab_size < length(chars)
stoi + {char: index for all chars}
itos « {index: char for all indices}
return vocab_size, stoi, itos

Function CreateReverseMapping(sequence):

n + length(sequence)

mapping < n - i: sequence[i] for i in [0,...,n-1]
return mapping

Directly from Karpathy’s original nanoGPT
except for appending the reverse mappings to train mappings
Function ProcessData(file_path, context_length):
data < ReadFile(file_path)
vocab_size, stoi, itos < CreateCharacterMappings(data)
n < length(data)
// Split data
train_data < data[0:0.9n]
val_data ¢ data[0.9n:0.95n]
test_data < data[0.95n:n]
// Create TIPA mappings
train_mappings <+ | |
for i = 0 to length(train_data) - context_length do
window < train_datali:i+context_length|
reverse_map + CreateReverseMapping(window)
Append reverse_map to train_mappings
end for
// Save metadata
meta < {vocab_size, itos, stoi, train_mappings}
SaveMetadata(meta)
// Encode data
train_ids < Encode(train_data)
val_ids « Encode(val_data)
test_ids < Encode(test_data)
SaveEncodedData(train_ids, val ids, test_ids)
return train ids, val ids, test_ids

My implementation of deeper networks was straightforward: I increased layer depth from 16 to
32 and context length from 256 to 512. Note, increasing layer depth exceeded my VRAM
capacity on the A100, so I ran my experiments related to deeper networks on one H100 (80 GB
PCle) via Lambda Labs.

SubData Pre/Post Training Scheme

This strategy is essentially a “macro-level” Mixture of Experts fine-tuning run on top of a
pre-training of the base nanoGPT. Specifically, I intend to categorize the enwik8 dataset into 16
learned subsets by subject matter. The subset categories are first learned through an iterative
sampling process from the original dataset. 50 random samples from enwik8 are passed to an
LLM, and the LLM assigns a 16-subject categorization to that sample content. This is repeated
for 20 rounds, for a total of 320 (theoretically overlapping) subject categories. A final LLM call
is used to extract the 16 most prominent subjects from that list of 320 overlapping subjects. Once
the final categories are determined, the entire enwik8 dataset is split into reasonably-sized
chunks and sorted into the 16 categories.

As a sanity check, both the original enwik8 dataset and a concatenation of the 16 subclasses
were found to be of length 99,621,832 characters. This ensures all data from the original

enwik8 was sorted into a category.

I have published my enwik8-categories16 dataset on Hugging Face here:

https://huggingface.co/datasets/Shivamkak/enwik8-categoriesl6

The 16 learned categories:
History "Events, figures, and periods

significant in human history."

Science "Scientific disciplines,
discoveries, and research."

Technology "Technological advancements,
devices, and computing."

Arts and Literature "Artistic movements, visual arts,
literary works, and authors."

Geography "Geographical locations, features,
and regional studies.”

Politics and Government "Political systems, events, leaders,
and governmental structures."

Economics and Business "Economic theories, business
practices, and financial systems."

Religion and Philosophy "Religious beliefs, practices,
philosophical ideas, and thinkers."

https://huggingface.co/datasets/Shivamkak/enwik8-categories16

Health and Medicine "Medical practices, health
conditions, and healthcare systems."

Culture and Society "Cultural practices, societal norms,
and social dynamics."

Sports and Recreation "Athletic activities, events, and
recreational pursuits."”

Education and Academia "Educational systems, institutions,
and academic research."

Language and Linguistics "Languages, dialects, and studies
in linguistics."”

Military and Warfare "Military history, strategies, and
defense systems."

Entertainment and Media "Film, television, music, and other
forms of entertainment.”

Biographies "Life stories and achievements of
notable individuals."

The training structure then follows as such:

Pre-train a model on the original enwik8 dataset for X steps

Sequentially fine-tune for Y steps on each of enwik8 sub-datasets

Determine which of the subject fine-tuning runs yields the most
performant checkpoints

Post-train on best-in-class subject fine-tunings with original enwik8

Heuristically, this approach hopes to learn “expert” subnetworks from each sequential
fine-tuning run on the sub-datasets, and then relearn the dependencies between these expert
subnetworks through the final post-training run on the original dataset.

RESULTS

train/loss-bpc train/perplexity-bpc

- 34426

O

valfloss-bpc val/perplexity-bpc

S——

O

[Base NanoGPT Train/Val Metrics | Best: 2500 Iterations]

train/loss-bpc train/perplexity-bpc

3000
2004
4 N
1) 1 2 3 4 5
val/loss-bpc val/perplexity-bpc
6000 w—4: 2.56441 gpt2-char-deep2-112-h! 9117¢
[Deep Network Train/Val Metrics | Best: 2000 Iterations]
tralnloss bpe train/perplexity-bpc
.
:
’ Step
2 10 0 2 4 6 8 1

val/loss-bpc val/perplexity-bpc

— 6: 2.69278 gpt2-char ity-bp
6000
4000
Ps Step step

2 4 6 8 10

[ROPE Network Train/Val Metrics | Best: 3000 Iterations]

train/loss_bpc : train/perplexity

= 1. 1.29587 gpt2-char-tipa-l12-h12-.. 6 8704424 train/loss_bp = 1: 2.45525 gpt2-char-tipa-112-h12-e...8704424 train/perplexit;
100
2000
4 step
: 2 25 . , . X
so00 \
S00m 25] 500m 1

val/loss_bpc val/perplexity

== 1: 1.45975 gpt2-chartipa-[12-h12-e...786.6704424 vallloss_bp = 1. 2.75061 got2-char-tipa-l12-h12-e...6 8704424 val/perplexit

- Step

1 L5 2

15 2 25

[TIPA Network Train/Val Metrics | Best: 2000 Iterations]

val/loss

— gpt2.char-categories-1736974096.3855126-Biographies — gpt2-char-categories- 1736974096 3855126-Entertainment_and_Media — gpt2-char.categories-1736974096.3855126-Military_and_Warfare — gpt2-char-categories-1736974096 3855126-Language_and_Linguistics
— gpuz-char-categories-1736974096.3855126-Education_and_Academia — gpt2-char-categories-1736974096.3855126-5port ation — gptz-char-categories- 1736974096 3855126-Culture_and_Society = gpt2-char-categories-1736974096.3855126-Health_and_Medicine
— gpt2-char-categories-1736974096 3855126-Religion_and_Philosophy — gptd-char-categories-1736974096 3855126 Economics_and_Business

0 500m 1 15 2

[Expert Fine-Tuning Runs on BASE Model Val Loss]

val/loss

— gpi2-char-categories-deep-1737008573.087039-Military_and_Warfare — gpt2-char-categories-deep-1737008573.087039-Language_and_Linguistics — gpi2-char-categories-deep-1737008873.087039-Education_and_Academia
— gpt2-char-categories-deep-1737008873 087039-Sports_and_Recreation = gpt2-char-categories-deep-1737008873,087039-Culture_and_Society — gpt2-char-categories-deep- 1737008873.087039-Health_and_Medicine = gpt2-char-categories-deep-1737008873.087039- Religion_and_Philosophy
— Rpt2-char-categories-deep- 1737008873.087039-Economics_and_Business — gpta-char-categories-deep-1737008873.087039-Politics_and_Government = gpt2-char-categories-deep- 1737008873.087039-History

0 500m 1 15 2

[Expert Fine-Tuning Runs on DEEP Model Val Loss]

train/loss

= gpt2-char-categories
= gpt2-char-categories-1T.

Religion_and_Philosophy
55126-Science

val/loss
855126-Religion_and_Philosophy
74096.3855126-Science

ar-categories-17

25
25
P - 1: @.68836 gpt2-char-categorie...gion_and_Philosophy - = 1: 1.12576 gpt2-char-categorie...gion_and_Philosophy
S~ = 1: 0.6834gpt2-char-categorie...096.3855126-Science _\ = 1: 1.07533 gpt2-char-categorie...096.3855126-Science
~— 2 ~
1.5 ~~ ~—
1 15
0.5 o —
0 500m 1 15 2 0 500m 1 15 2
[Expert Fine-Tuning on BASE Top Performers | Val/Train Loss]
train/loss val/loss
- gpt2 categories- 55126-Religion Philosophy 6-Religion_and_Philosophy
= gpt2-char-categories-1736974096.3855126-Science - -char-categories-1736974096.3855126-Science
25
2 == 1: 8.6605 gpt2-char-categorie...gion_and_Philosophy — == 1: 1,39239 gpt2-char-categorie.. tics_and_Government
= 1: 0.4245gpt2-char-categorie.. tics_and_Government S~ == 1: 1.12531 gpt2-char-categorie...gion_and_Philosophy
. 2 S~
15 S~ S~
1 15
0.5 \;W—ﬂ ~~———
0 500m 1 15 2 0 500m 1 15 2
[Expert Fine-Tuning on DEEP Top Performers | Val/Train Loss]
train/loss-bpc train/perplexity-bpc
N 215 &
— @: 1.10913 gpt2-char-subcla 6.0683422 train/loss-bj == @: 2.15716 gpt2-char-subclass-post-...422 train/perplexi
Press CMD+C to copy this data 21 Press CMD+C to copy this data
1 2
095 195
tep » Step |
0 500m 1 15 2 25 ! 0 0 1 15 2 3
val/loss-bpe val/perplexity-bpc
16 — 0: 1.41787 gpt2-char-subclass-post-.. 286.0683422 val p /’/——’_——_‘ = 0: 2.67043 gpt2-char-subclass-post-.. 83422 val/perplexity-bp ﬁ—_—)’.
Press CMD+C to copy this data 3 Press CMD+C to copy this data
29
1.45
Step 2 Step
! s : = < & . 0 500m 1 15 2 25 3

[BASE + Science Post-Train Network Train/Val Metrics | Best: 500 Iterations]

train/loss-bpc train/perplexity-bpc

val/loss-bpc val/perplexity-bpc

[BASE + Philosophy Post-Train Network Train/Val Metrics | Best: 500 Iterations]

Below, I’ve curated the validation loss for the best-performance checkpoint for each experiment:

Experimental Condition Best Validation Loss in BPC
BASE + Expert Fine-Tune : Science .075
DEEP + Expert Fine-Tune : Philosophy .125
BASE + Expert Fine-Tune : Philosophy .126
DEEP 5 215¢)

BASE Philosophy Post-Train .390

DEEP Expert Fine-Tune : Government .392

BASE Science Post-Train 417

BASE .429

ROPE .429

TIPA .460

ANALYSIS & NOTES

It was very exciting to see my expert fine-tuning scheme perform to the extent that it did with the
science category fine-tuning validation loss of 1.075 far exceeding that of the base
implementation at 1.429. However, this scheme certainly did not perform as I initially
hypothesized. The sequential nature of the fine-tuning runs was expected to aggregate
information in newly learned subnetworks; this did not seem to be the case, as the
best-performing fine-tuning runs were very close to the start of the process. In fact, the
best-in-class science category was second in the list of sequential runs, and all subsequent
learnings from other category fine-tunings only seem to have reduced performance.

Further, it was interesting to see that while the deep network outperformed the base network,
none of the deep expert fine-tuning runs were able to outperform the best-in-class science
fine-tuning run on the base model. For this reason along with the fact that the post-training
process failed to improve validation loss for any of the base model fine-tuning runs, I decided
not to conduct any post-training experiments for fine-tuning runs off of the deep model.

I was very optimistic about performance for TIPA, as it seems to be a very intuitive idea to train
on both forward and backward positional relationships. I still fear that my implementation of the
TIPA Module fails to utilize the reverse character mappings in a way that is actually conducive
to learning better network representations. I say this because these reverse character mappings
were simply used in a linear layer. Future work on this task would be very well spent improving
the use of the reverse character mappings in model architecture and loss estimation.
Heuristically, however, it does make sense that reverse character mappings may not be as useful
in a character-level language model: if the task at hand is next-character prediction, learning the
dynamics of previous-character prediction may not be the most optimal use of the language
model.

Overall, I really loved this task. Once again, I would really like to thank Andrej Karpathy. Truly
the G.O.A.T. His educational resources made this task very straightforward for someone with
very little prior experience in training language models.

