
Strategic Mastery in Terminal: A Novel Reinforcement Learning Approach
to Tower-Defense Gameplay

Yagiz Devre [hd0216@princeton.edu] 1 Ishaan Javali [ij9461@princeton.edu] 1 Shivam Kak [sk3686@princeton.edu]1

1Princeton University

Abstract

From chess to Atari to AlphaGo, performance in games has been a
benchmark of performance for machine learning. Terminal is a tower-
defense game where players submit algorithms that play against each
other over a diamond-shaped board. The goal of the game is to breach
the opponent’s defenses and reach the border of the gameboard. Ter-
minal has hundreds of thousands of annual players, with strategies typ-
ically involving thousands of hard-coded, rule-based, logical cases for
the tower defense simulation. This is a very limited approach as the
number of game board configurations is over 10250!
Thus far, no Reinforcement Learning-based approaches have been at-
tempted for Terminal. We propose a novel solution to Terminal using
methods in Reinforcement Learning (RL) and machine learning that
achieves a ranking among the top 300 players world-wide, placing the
algorithm in the top 1%.Moreover, as pioneers in the field, we have

curated a publicly-available dataset of 30,000 online matches played by
over 1,000 different algorithms that can be used for further research of
the Terminal game for RL.
Our approach utilizes a RL technique known as behavioral cloning along
with convolutional neural networks, which allows for our AI agent to
analyze the game board and learn to mimic expert players from our
dataset of online matches. This innovative approach not only demon-
strates the effectiveness of RL in Terminal but also contributes to the
broader advancement of AI in gaming. Our next steps are to improve
the algorithm through thousands of games of self-play.
Keywords: Reinforcement learning, behavioral cloning, data cleaning,
state space, convolutional neural network, proximal policy optimization
(PPO), natural policy gradient, actor/critic networks, web scraping,
trajectory-weighted reward function

Introduction & Game Mechanics

Correlation One’s Terminal is a Tower Defense game set in a diamond-
shaped arena, where players use mobile units and structures to balance
offense and defense. Players utilize two resources: mobile points (MP)
for attack units and structure points (SP) for defenses, aiming to reduce
the opponent’s health to zero. The game combines planning, forecast-
ing, and real-time decision-making.
This paper explores using Reinforcement Learning (RL) to master Ter-
minal’s strategic challenges, surpassing human gameplay capabilities.
The game’s complexity requires both strategic foresight and adaptabil-
ity, presenting a unique challenge for traditional game-playing algo-
rithms.

Until now, players have relied on rigid, rule-based methods which lack
flexibility against novel strategies.
RL offers a viable alternative, allowing dynamic strategy formation and
adaptability. Terminal’s gameplay requires simultaneous actions each
round, demanding predictive and strategic adjustments. The game’s
large state and action spaces, along with the indirect nature of its re-
wards, make RL well-suited to navigate and optimize strategies effec-
tively.
This project aims to develop an RL algorithm that excels in Terminal
and provides insights applicable to real-world strategic decision-making
environments, advancing AI’s capabilities in dynamic and competitive
settings.

State and Action Space

Game Description: Terminal is a Tower Defense game where two players
engage in simultaneous turns on a diamond-shaped grid. Each player
starts the game with 40 structure points (SP), 5 mobile points (MP),
and 30 Health Points (HP). The game challenges players to strategically
deploy units and structures for offense and defense within a competitive
setting.
Game Board and Setup: The board, as in Figure 1, is a 28x28 dia-
mond grid divided into two halves, each controlled by one player. The
game begins with no units on the board, setting the stage for strategic
deployments.

Figure 1. Game Board Layout

Unit Deployment and Actions: Players have the option to deploy three
types of structure units and three types of mobile units:

Structure Units: Wall, Support, Turret.
Wall: Prevents opponent Mobile Units.
Support: Provides shielding to friendly units.
Turret: Deals damage to an enemy Mobile units.

Mobile Units: Scout, Demolisher, Interceptor.

Scout: Fast-moving mobile unit with light damage.
Demolisher: Slow-moving unit with high damage.
Interceptor: Very-slow-moving unit that deals damage
to enemy Mobile units.

Structure units can be upgraded or removed to adapt strategies, allow-
ing players to reclaim a portion of spent SP. Mobile units are placed
on the edge points of each player’s side, with possibilities for stacking
multiple units at a single location for strategic advantages. All the at-
tributes of the units can be summarized as in Table 1.

Table 1. Attributes of Attack and Defense Units in Terminal

Unit Type Cost Health Damage Range
Attack Units
Scout 1 MP 15 2 3.5 tiles
Demolisher 3 MP 5 8 4.5 tiles
Interceptor 1 MP 40 20 4.5 tiles
Defense Units
Wall 1 SP 60 0 0 tiles
Support 4 SP 30 0 3.5 tiles
Turret 2 SP 75 5 2.5 tiles
Upgraded Defenses
Upgraded Wall 2 SP 120 0 0 tiles
Upgraded Support 8 SP 30 0 7 tiles
Upgraded Turret 6 SP 75 15 3.5 tiles

:Game Dynamics and Phases: Each game round includes a deploy-
ment phase followed by an action phase where mobile units advance
towards the opponent’s edge to attempt a breach and reduce HP. The
game provides additional SP and MP allocations each round to enhance
strategic options.
Endgame Conditions: The game concludes when a player’s HP reaches
zero or at the 100th round. The player with the highest remaining HP
wins. If HP is tied after 100 rounds, the winner is determined by the
least computation time used.

Data Preparation

The public replay files represent a log of the entire
playable game, including animations related to the
frame sequences. It was necessary to parse the state
information we determined to be useful before using
the data for model training.
After evaluating performance in the first iteration
cycle, our team made two key realizations: first,
model awareness of which border cells are most

breached can help in the placement of more effi-
cient defense units. Second, advanced players focus
on few, upgraded units. Thus, for each (x,y) coor-
dinate location, it becomes important to track both
the breach status of the most recent turn and cumu-
lative history of breaches at that location. It also
became necessary to facilitate upgrade and remove
actions for any defense unit, which complements our
existing BFS detection.

Figure 2. Data Pipeline Parsing Phase Schematic Figure 3. Data Pipeline Curation Phase Schematic

Agent Deployment

After training a policy network via Behavioral Cloning, we are ready
to deploy it and test our model against other algorithms and strategies
in real-time. Below is a general procedure for how we do so:

1. Save model parameters in a ’.pth’ file after training. Load the
model in the Python strategy file we submit to the Terminal
competition leaderboard.

2. Reconfigure the Terminal starter kit code and use their API to
extract/process the state information during each round to get the
desired features and input format for ours model.

3. Run inference on our model and get the probability distribution
over the actions.

4. Make moves heuristically:
1. While SP remaining: mask out the actions

corresponding to placing mobile units /
already-occupied cells. Then sample from the
probability distribution over remaining, playable
actions.

2. If the round number is even, while we have more
mobile units: mask out the actions corresponding to
placing structural units / placing units on
structure-occupied cells.

Training an Agent: Behavioral Cloning

Figure 4. Policy Network Architecture

Figure 5. Policy Network Architecture

:
Iteration 1: For our first iteration of the data collection / models,
our game board state is a 28x28x4 matrix containing attack, cur-
rent health, max health, and range for every cell. Our Player State is
a 9-dimensional vector. Our output is a distribution over 714 playable
actions (only placing structure and mobile units).
Iteration 2: Game board state is a 28x28x8 matrix. Our Player State
is a 17-dimensional vector (now containing breach information). Our
output is a distribution over 1134 playable actions (placing, removing,
upgrading structure and mobile units).
CNN: Every convolutional layer had padding to maintain the width
and height of the inputs and was followed by Average pooling over 2x2
patches to then downsize the width and height, each by half. Every
convolutional layer also had a kernel size of 5x5, stride of 1. The final
output was of shape 3x3x32.
ResNet Details: There were 3 ResNet blocks. Each block consisted of
2 Conv layers followed by Batch Norms. The first ResNet block went
from an input of depth 8 to 8 feature maps, the second block went from
8 to 16, and the third block went from 16 to 32 feature maps. The final
output was of shape 2x2x32.
Fully-Connected Layers Details: The input to the first fully-connected
layer was either the flattened 3x3x32 or 2x2x32 (depending on whether
the CNN or ResNet layers were used) followed by either a 9 or 17-
dimensional vector (for iteration 1 and iteration 2, respectively). The
following layers then have 512 and 1024 neurons, with the final layer
outputting a distribution over either 714 actions (for iteration 1) or
1134 actions (for iteration 2).

Results & Experiments

Figure 6. Training and Validation Loss Curves for Iteration 2
of CNN and ResNet architectures (as detailed in Training an
Agent section).

As can be observed from Figure 5, training loss repeatedly increases
and decreases across epochs for both models while the validation loss
decreases and then tapers off with diminishing returns and smaller fluc-
tuations. Additionally, it can be seen that the ResNet model achieved
lower validation losses with one of its low points being around 3.299 at
Epoch 9.
At Epoch 9, the CNN-based model also achieved a relatively low val-
idation loss, prior to it having higher validation losses for the next 7
epochs. Thus, the model’s parameters at this epoch were chosen for

later testing on the Terminal website. Similarly, Epoch 9 was chosen
for the ResNet-based model as the model had not yet overfit on the
training set. Epoch 19 was also chosen to test in practice as it yielded
relatively low validation and test losses.

Bot Levels
Model Easy Medium Hard

CNN Iter 1 9 / 16.3 / 1 7 / 27 / 10 2 / 31.5 / 22.1
ResNet Iter 1 10 / 28 / 0 7 / 30.7 / 10 7 / 30 / 10.3

Table 2. Each model from Iteration 1 played 10 games
against each of the Bots. The first number in each cell
denotes the number of wins out of 10 rounds. The second
and third numbers are the average absolute health difference
at the end of rounds the model won and lost, respectively.

As can be seen, from Iteration 1, the ResNet model seemed to perform
better in practice, generally. It won just as many matches, if not more
matches, at each of the difficulty levels than the CNN model. Addi-
tionally, with the exception of the hard bot, when it was played against
the easy and medium bots, for the rounds it won, it had a larger health
difference over its opponent (28 and 30.7). When the ResNet model
lost rounds to the bots, it lost by a smaller margin than did the CNN
model (losing by 0, 10, and 10.3 health on average).
Thus, as observed from Figure 5 and Table 3, it appears the ResNet
model architecture yields the best results, both in terms of loss curves
(Iteration 2) and in-real-world play (Iteration 1).

Limitations & FutureWork

A large heuristic choice centers on whether or not
action responses are separated between Structure
units and Mobile units. It should be noted that
both of these unit types draw from different re-
source pools, in which sense it would be logical to
separate policy networks into two more specialized
networks. However, such a choice may eliminate
the possibility for coordination between structure
and mobile units, which is a key element of more
advanced strategies.
Behavioral cloning methods function most opti-
mally when an agent learns a policy based on expert
data. While our team roughly selected data from
intervals corresponding to season kick-offs, it is cer-
tainly true that our model is learning from both

the winners and the losers of these matches. Future
iterations of data collection may involve a more in-
volved web scraper that is able to scraper for spe-
cific players found on public leader boards (top 500
worldwide - which would now include our matches
as well!).
A crucial, exciting area of future development in
the field of designing a Terminal agent is ability to
perform self-play to avoid the large data overhead
needed to perform behavioral cloning. While our
team has been developing a self-play environment
for Terminal that would open doors to many more
avenues of research for the open-source community,
this project is still in development.

References

[1] He, K., Zhang, X., Ren, S., Sun, J. (2015). Deep residual learn-
ing for image recognition. arXiv preprint arXiv:1512.03385. Retrieved
from https://arxiv.org/abs/1512.03385
[2] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. (1998, November).

Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11), 2278–2324. doi: 10.1109/5.726791
[3] One, C. (n.d.). C1gamesstarterkit. https://github.com/correlation-
one/C1GamesStarterKit. ([Software])

Acknowledgements

We would like to acknowledge and thank Professor Mengdi Wang and Professor Benjamin Eysenbach
for their kind feedback and guidance on this project.

https://ben-eysenbach.github.io/intro-rl/ Correlation One Terminal hd0216, ijavali, sk3686@princeton.edu

COS 435: Reinforcement Learning
mailto:john.doe@example.com

