
Strategic Mastery in Terminal: A Novel Reinforcement Learning Approach to
Tower-Defense Gameplay

Ishaan Javali (ijavali@princeton.edu)
Department of Computer Science, Princeton University

Princeton, NJ 08540 USA

Yagiz Devre (yagiz.devre@princeton.edu)
Department of Computer Science, Princeton University

Princeton, NJ 08540 USA

Shivam Kak (sk3686@princeton.edu)
Department of Computer Science, Princeton University

Princeton, NJ 08540 USA

Abstract

From chess to Atari to AlphaGo, performance in games has
been a benchmark of performance for machine learning. Ter-
minal is a tower-defense game where players submit algo-
rithms that play against each other over a diamond-shaped
board. The goal of the game is to breach the opponent’s de-
fenses and reach the border of the gameboard. Terminal has
hundreds of thousands of annual players, with strategies typ-
ically involving thousands of hard-coded, rule-based, logical
cases for the tower defense simulation. This is a very limited
approach as the number of game board configurations is over
10250!

Thus far, no Reinforcement Learning-based approaches have
been attempted for Terminal. We propose a novel solution to
Terminal using methods in Reinforcement Learning (RL) and
machine learning that achieves a ranking among the top 300
players world-wide, placing the algorithm in the top 1

Moreover, as pioneers in the field, we have curated a publicly-
available dataset of 30,000 online matches played by over
1,000 different algorithms that can be used for further research
of the Terminal game for RL.

Our approach utilizes a RL technique known as behavioral
cloning along with convolutional neural networks, which al-
lows for our AI agent to analyze the game board and learn
to mimic expert players from our dataset of online matches.
This innovative approach not only demonstrates the effective-
ness of RL in Terminal but also contributes to the broader ad-
vancement of AI in gaming. Our next steps are to improve the
algorithm through thousands of games of self-play.

Keywords: Reinforcement learning, behavioral cloning, data
cleaning, state space, convolutional neural network, proximal
policy optimization (PPO), natural policy gradient, actor/critic
networks, web scraping, trajectory-weighted reward function

Introduction
Correlation One’s Terminal represents a strategic challenge
set within the Tower Defense genre, where players compete
in a diamond-shaped arena by deploying mobile units and
structures. The game requires a balance between offensive
tactics and defensive strategies, utilizing two types of re-
sources—mobile points (MP) for attacking units and struc-
ture points (SP) for stationary defenses. This game is not only
about battling an opponent but also about planning, forecast-
ing, and real-time decision-making. The game effectively de-
mands players to deploy mobile units and construct defensive

structures using allocated resources strategically. The ulti-
mate objective is to diminish the opponent’s health points to
zero, employing a mix of offensive maneuvers and defensive
tactics.

This paper seeks to explore the application of Reinforce-
ment Learning (RL) to navigate the strategic complexities of
Terminal, thereby optimizing gameplay strategies beyond hu-
man capabilities. This challenge is significant because Ter-
minal requires a deep understanding of both long-term strat-
egy and immediate tactical responses, reflecting real-world
decision-making scenarios.

The difficulty lies in the game’s requirement for both
strategic planning and adaptability to dynamic conditions.
The state space of Terminal is vast and complex, present-
ing a significant challenge for traditional game-playing algo-
rithms. Despite the popularity and strategic depth of Termi-
nal, there has been no previous work that applies machine
learning (ML) or reinforcement learning (RL) techniques to
this game. Traditionally, players in Terminal have relied on
extensive if-else logic and manually programmed rules to
guide the deployment and positioning of units. This approach
requires defining thousands of specific rules and handling nu-
merous edge cases to cover as many game situations as pos-
sible. However, these hard-coded, rule-based methods often
lacked flexibility and scalability, making them less effective
against unpredictable or novel strategies employed by oppo-
nents. This gap presents a unique opportunity to explore and
pioneer the use of sophisticated ML and RL methods in Ter-
minal, potentially transforming how the game is played and
setting a groundwork for future AI research in complex strate-
gic environments.

The reinforcement learning (RL) approach offers a promis-
ing alternative to these traditional methods due to its ability
to adapt and generalize from varied game situations. Unlike
algorithms that depend on predefined conditions, reinforce-
ment learning models enables dynamic strategy formation,
allowing the model to make improved decisions based on
the current state without the constraints of hard-coded logic.
This enhanced adaptability makes RL models capable of ef-
fectively responding to a wide range of opponent tactics.

Furthermore, the game dynamics of Terminal add to the
complexity, with simultaneous actions required every round,
demanding both prediction capabilities and strategy adjust-
ments according to your opponent. The state space includes
not only the variety of possible unit placements and move-
ments but also the types of units and their strategic implica-
tions depending on their positioning on the board which will
be described in the following section. Moreover, the action
space in Terminal is enormous due to the many potential ac-
tions a player can take each turn, influenced by the current
health, budget, and the state of both the player’s and the op-
ponent’s defenses.

Adding to the challenge is the absence of explicit and im-
mediate rewards in Terminal. Success in the game is not
solely about reducing the opponent’s health; it also involves
managing one’s resources effectively and strategically posi-
tioning units to both defend and attack. This advanced com-
bination of factors makes RL particularly suited for Terminal,
as it can learn and optimize strategies based on long-term out-
comes rather than immediate gains, navigating the large state
and action spaces with more flexibility than traditional rule-
based systems.

This project, therefore, seeks to pioneer the use of rein-
forcement learning to understand the strategic layers of Ter-
minal. By leveraging advanced RL techniques, we aim to de-
velop an algorithm that not only competes at the highest lev-
els within the game but also provides a template for applying
similar strategies in broader, real-world contexts that mirror
the complex decision-making environments found in Termi-
nal. Through this exploration, we anticipate contributing to
the field of AI by demonstrating the practical application and
benefits of reinforcement learning in dynamic and strategic
settings, pushing the boundaries of what AI can achieve in
competitive and adaptive environments.

Game Mechanics
Fundamentally, Terminal, as described earlier, is form of
Tower Defense Game which makes it a perfect strategy based
game to play with a Reinforcement Learning algorithm. The
game itself is a two-player, simultaneous-turns game mean-
ing that every player simultanously plays a set of actions in
each round. The game involves strategic deployment of units,
management of resources, and real-time decision-making, all
unfolding within a competitive setting.

Game Initialization
At the start of each game in Terminal, players begin with
a standardized setup that establishes the initial conditions.
Each player is allotted an equal and fixed number of struc-
ture points (SP) and mobile points (MP), typically starting
with 40 SP and 5 MP, which they can use to deploy their ini-
tial units and structures. Additionally, both players start with
a set health total, usually 30 Health Points (HP), which they
must defend while attempting to reduce their opponent’s HP
to zero. Finally, since no player has placed a unit, the game-
board starts as an empty arena.

Game Board
The game is laid out in a diamond grid, represented in Figure
1, with a size of 28×28. Each player controls one half of the
diamond, which is mirrored across the central horizontal axis.
One player occupies the bottom half, starting from the bottom
point, while the other controls the top half from the top point.
This division enforces a clear territorial distinction between
the two players. At each round, both players simultanously
decide and deploy 2 classes of units, defence or offense, to
their own half of the board.

Figure 1: Game Board

Action Space
Deploy : For the 210 points that the player controls on their
half of the board, the players can select any of the three Struc-
ture units for defences in each turn as long as there is a budget
for such deployment:

• Wall: A cheap defence unit that prevent opponent Mobile
Units. Takes 1 Structure Credits, has an HP of 60.

• Support: An expensive unit that provides shielding to
friendly units that pass within a certain range(3.5 tiles).
Takes 4 Structure Credits, has an HP of 30.

• Turret: An expensive unit that deals 5 damage to an en-
emy Mobile unit within a certain range(2.5 tiles). Takes 2
Structure Credits, has an HP of 75.

This makes the possible action space for simply deploying
structure units 3210! Additional to the defence units, the play-
ers can select any of the three mobile units in each turn, how-
ever the mobile units can be only place on the 28 edge points
of their side of the diamond arena(14 on both sides).

• Scout: A cheap, fast-moving mobile unit that deals light
damage. Takes 1 Mobile Credit, has an HP of 15 and deals
2 damage to the opponent structures.

• Demolisher: An expensive, slow-moving mobile unit that
deals high damage to the opponent structures. Takes 3 Mo-
bile Credits, has an HP of 5 and deals 8 damage to the
opponent structure.

2

• Interceptor: A cheap, very-slow-moving unit that deals
20 damage to an enemy Mobile units within a certain
range(4.5 tiles). Takes 1 Mobile Credits, has an HP of 40
and deals 20 damage to the opponent Mobile Units but does
0 damage to the opponent Structure Units.

One additional factor to consider is that players are allowed
to stack multiple attacking units on the same location in
the deployment phase to gain strategic advantage, since
the enemy structure units target one mobile unit at a time.
However, unlike the mobile units, it is not possible to stack
multiple structure units.

Upgrade and Remove : Additional to deploying units, a
player is able to effectively remove or upgrade a structure unit
that has already been placed in the desired location, adding
depth and flexibility to their defensive and offensive strate-
gies. Upgrading a structure typically enhances its capabili-
ties, such as increasing its health, range, or damage output,
which can be critical for fortifying positions or extending
control over key areas of the board. Conversely, removing
a structure provides strategic adaptability, allowing players to
recover a portion of the spent structure points (SP) as a refund
and redeploy them more effectively in response to the shifting
dynamics of the game by the following amount:

Refund = 0.75× Initial Cost× Remaining Health
Original Health

The given unit information, therefore, can be summarized
as in Table 1.

Table 1: Attributes of Attack and Defense Units in Terminal

Unit Type Cost Health Damage Range
Attack Units
Scout 1 MP 15 2 3.5
Demolisher 3 MP 5 8 4.5
Interceptor 1 MP 40 20 4.5
Defense Units
Wall 1 SP 60 0 0
Support 4 SP 30 0 3.5
Turret 2 SP 75 5 2.5
Upgraded Defenses
Upgraded Wall 2 SP 120 0 0
Upgraded Support 8 SP 30 0 7
Upgraded Turret 6 SP 75 15 3.5

Game Rounds and Game Termination
Action Phase : At each round, after the deployment phase
is completed, the game engine sets up Mobile units and Struc-
tures as players decide in the Deploy phase. The Action phase
moves forward in steps and lasts until all Mobile units are ei-
ther destroyed or reach the opponent’s edge. When a mobile

unit reches to one of the opponent’s edges, it causes a breach
and thus decrements the opponent health by 1.

Additional Allocations : Until one of the players reach to
the HP of 0, or until the 100th round is reached, the players
continue playing the game while receiving additional SP and
MP to incentive deployment. Both players start each round
by receiving an additional allocation of 5 Structure points
and 5 Mobile points. Additionally, the game rewards play-
ers with 1 extra Mobile point for every 10 turns that have
elapsed, increasing their capacity for strategic deployments
as the game progresses—for instance, players receive 5 Mo-
bile points from turns 0 through 9, 6 Mobile points from turns
10 through 19, and this increment continues in a similar pat-
tern throughout the game.

Endgame : The game ends if a player reaches Health Point
of 0, in that case the opponent will win. Additionally, the
game will terminate in the 100th round given that neither of
the players reached to HP of 0, in which case the player with
the highest health will win. Finally, in the case that both play-
ers have the same health at the end of the 100th round the
algorithm with the least computation time will be the winner.

Data Preparation
Web Scraper : Substantial groundwork was involved in
building the infrastructural material that allowed for curation
of data into a format suitable for machine learning. Ter-
minal exposes an outward, player-facing replay file that is
downloadable in a JSON-like format for each public terminal
match. It is worth noting that the public matches follow a con-
venient URL schema and are thus primed for visitation from
a web scraper. The web scraper used to find public matches
specifically targeted those matches at indices near season kick
offs. Heuristically, our team decided that this was a good ap-
proximation of determining dense swaths of matches that are
likely to yield more advanced players. Our team ran a total
of 30 instances of the web scraper over a course of 3 days
to yield approximately 28,000 non-duplicate public matches
concentrated around the season 7 Terminal kick off.

Figure 2: Schematic of data pipeline parsing phase
Extracting Desired State : The public replay files repre-
sent a log of the entire playable game, including animations
related to the frame sequences. It was necessary to parse the
state information we determined to be useful before using the
data for model training. Our team went through two separate
iteration cycles in regard to the state information we parsed
from raw data, the second iteration being more comprehen-
sive in that it incorporates more action responses and passes

3

more analytical state information for each (x,y) location on
the game board. A further section will describe the motiva-
tion for this enlarged state designed in the second iteration.
Reference Table 2 for differences between the state parsed
in the first iteration cycle compared to the second iteration
cycle. Here, state broadly refers to all game information, in-
cluding the action response. Game Board State refers to the
information stored for each cell on the board. For our Action
Response, since players can play multiple actions in a single
turn, we tally the number of times they play each action.

Table 2: Differences in Parsed State Between Iteration Cycles

Data Type Parser Iteration
One Two

Game Board State
Attack ✓ ✓
Current Health ✓ ✓
Max Health ✓ ✓
Range ✓ ✓
Type ✗ ✓
Owner ✗ ✓
Breach ✗ ✓
Cumulative Breach ✗ ✓

Player State
p1Health ✓ ✓
p2Health ✓ ✓
p1PreviousHealth ✓ ✓
p2PreviousHealth ✓ ✓
p1 Structure Points ✓ ✓
p1 Mobile Points ✓ ✓
p2 Structure Points ✓ ✓
p2 Mobile Points ✓ ✓
Round # ✓ ✓
p1 Left Breach ✗ ✓
p1 Right Breach ✗ ✓
p1 Cumulative Left Breach ✗ ✓
p1 Cumulative Right Breach ✗ ✓
p2 Left Breach ✗ ✓
p2 Right Breach ✗ ✓
p2 Cumulative Left Breach ✗ ✓
p2 Cumulative Right Breach ✗ ✓

Action Response
714 integers ✓ ✗
1134 integers ✗ ✓

Figure 3: Schematic of data pipeline curation phase

Design Choices Among Parser Iterations : Refer to
Table 2 for the following discussion of differences between
the parsed state of the two iteration cycles. After evaluating
performance in the first iteration cycle, our team made two
key realizations: first, model awareness of which border cells
are most breached can help in the placement of more efficient
defense units. A simple terminal agent will likely not learn
of key structural weak points in its defense; indeed, a smart
opponent will then be able to exploit these weak points for
a quick victory. Thus, for each (x,y) coordinate location, it
becomes important to track both the breach status of the most
recent turn as well as the cumulative history of breaches at
that location. Note that as an invariant the breach data for
any non-border cells is always 0.

The second realization was that advanced players focus
on quality of structural units rather than quantity. Specifi-
cally, a simple agent places many low value defense units,
inevitably congesting its own board space and hindering
the viability of its mobile units, whereas advanced players
upgrade key defense units and often remove unnecessary
units in order to improve general percolation on their side of
the game board. Thus, it also became necessary to facilitate
upgrade and remove actions for any defense unit. Previously,
the terminal agent performed a BFS to determine percolation
status from border to the middle of the board before placing
defense units so as to ensure a path for mobile units. Ability
to remove units will significantly assist in the practicality of
this BFS calculation as it allows the model more flexibility
over turns and thereby allows for a degree of longer-term
planning.
Data Sampling : Upon preparation of the data as outlined
previously, the game board state, player state, and action re-
sponse are processed into tensors and provided to the ma-
chine learning pipeline. It should be noted that batch sam-
pling selects random indices from the dataset such that the
game board state, player state, and action response for a given
turn maintain a relationship while the turns in a given sample
are not necessarily from the same game.

Training an Agent: Behavioral Cloning

As discussed in prior sections, there were 2 iteration cycles
for data collection / extraction. For both cycles, we focused
on training an agent via running Behavioral Cloning (BC) on
the dataset of expert demonstration replay files we scraped
from the competition website. We treated the winner of each
match as the expert to imitate and remapped the points on
the board so that the winners always played as Player 1 in the
game (i.e. our agent learns that the expert only controls points
with y-coordinate ≤ 13).
Architecture & Intuition For both iterations, we tested
CNN-based and ResNet-based architectures for our policy
network. The intuition behind this is: because we define our
game board state in accordance with Table 2 where we have

4

information at a cellular, per-point-on-the-board basis, this
yields information in a 28x28xd matrix format (where d is
the number of features per cell). Especially considering the
game mechanics where the proximity of units has a bearing
on nearby units, it intuitively makes sense to apply convolu-
tion layers to learn spatial information about the board and
produce a latent vector encoding.

In addition to the game board state, for each round we have
information at a macro level about the players’ states (specif-
ically regarding the players’ healths, damages taken, points
available for expenditure). This information is incompatible
to be passed through 2D-convolutional layers. Thus, we first
pass the game board state through the convolutional layers,
obtain the output encoding, and then pass this encoding of
the game board as well as the player state vector through lin-
ear layers to finally produce our action distribution.

We take our Action Response vector which contains the
tallies of actions played in each round, turn it into a probabil-
ity distribution by calculating the proportion each action was
played per round, and then compute the Categorical Cross-
Entropy Loss between our model’s output and the true fre-
quency the actions were played with.

There are a total of 504,000 samples in our dataset, split
95% for training, 5% for validation so as to maximize the
data available for our model to learn.

A diagram of the architecture can be found below.

Game
Board
State

Convolutional Layer / Residual Block

Convolutional Layer / Residual Block

Convolutional Layer / Residual Block

Flattened Player State

Fully-Connected Layer

Fully-Connected Layer

Distribution over 714 actions

Figure 4: Policy Network Architecture

Inputs & Outputs :

Iteration 1: For our first iteration of the data collection /
models, our game board state is a 28x28x4 matrix containing
attack, current health, max health, and range for every cell on
our game board (as shown in Table 2). Our Player State is a
9-dimensional vector. Our output is a distribution over 714
playable actions (only placing structure and mobile units).

Iteration 2: Game board state is a 28x28x8 matrix. Our
Player State is a 17-dimensional vector (now containing
breach information). Our output is a distribution over 1134
playable actions (placing, removing, upgrading structure and
mobile units).

Model Parameters :
CNN: Every convolutional layer had padding to maintain

the width and height of the inputs and was followed by Av-
erage pooling over 2x2 patches to then downsize the width
and height, each by half. Every convolutional layer also had
a kernel size of 5x5, stride of 1. The final output was of shape
3x3x32.

ResNet Details: There were 3 ResNet blocks. Each block
consisted of 2 Conv layers followed by Batch Norms. The
first ResNet block went from an input of depth 8 to 8 feature
maps, the second block went from 8 to 16, and the third block
went from 16 to 32 feature maps. The final output was of
shape 2x2x32.

Fully-Connected Layers Details: The input to the first
fully-connected layer was either the flattened 3x3x32 or
2x2x32 (depending on whether the CNN or ResNet layers
were used) followed by either a 9 or 17-dimensional vector
(for iteration 1 and iteration 2, respectively). The following
layers then have 512 and 1024 neurons, with the final layer
outputting a distribution over either 714 actions (for iteration
1) or 1134 actions (for iteration 2).

Deploying the Agent
After training a policy network via Behavioral Cloning, we
are ready to deploy it and test our model against other algo-
rithms and strategies in real-time. Below is a general proce-
dure for how we do so:

1. Save model parameters in a ’.pth’ file after training. Load
the model in the Python strategy file we submit to the Ter-
minal competition leaderboard.

2. Reconfigure the Terminal starter kit code and use their API
to extract/process the state information during each round
to get the desired features and input format for our model.

3. Run inference on our model and get the probability distri-
bution over the actions.

4. Make moves heuristically:

(a) While we have more structural points: mask out the ac-
tions corresponding to placing mobile units / placing
units on already-occupied cells. Then sample from the
probability distribution over remaining, playable actions
and build structural units.

5

(b) If the round number is even, while we have more mo-
bile units: mask out the actions corresponding to plac-
ing structural units / placing units on structure-occupied
cells**. Then repeatedly sample and place mobile units.
We only place mobile units every other round is so we
can conserve mobile points, then deploy a large group
of mobile units which have a better chance of breaching
the opponent’s defenses.

** We additionally, need to determine whether a mobile unit
placed on our border will be boxed in by structural units (i.e.
can it reach the opponent’s side or get trapped?). We check
this with a Breadth-first search from the cells on the oppo-
nent’s border with us, and traverse to see which cells on our
side of the board we can reach. We then mask out the actions
in our probability distribution that correspond to placing a
mobile unit on boxed-in cells as those mobile units would be
trapped by structures and serve no purpose.

In this manner, we can test our model against other players’
strategies on the leaderboard, as well as the 5 bots of varying
difficulty on the Terminal website.

Results / Experiments
The graph below shows the Categorical Cross-Entropy losses
(training and validation) of a CNN-based architecture and
ResNet-based architecture after iteration 2 of data collection.

Figure 5: Training and Validation Loss Curves for Iteration 2
of CNN and ResNet architectures (as detailed in Training an
Agent section).

As can be observed from Figure 5, training loss repeatedly
increases and decreases across epochs for both models while
the validation loss decreases and then tapers off with dimin-
ishing returns and smaller fluctuations. Additionally, it can be
seen that the ResNet model achieved lower validation losses
with one of its low points being around 3.299 at Epoch 9.

At Epoch 9, the CNN-based model also achieved a rela-
tively low validation loss, prior to it having higher validation
losses for the next 7 epochs. Thus, the model’s parameters
at this epoch were chosen for later testing on the Terminal
website. Similarly, Epoch 9 was chosen for the ResNet-based
model as the model had not yet overfit on the training set.

Epoch 19 was also chosen to test in practice as it yielded rel-
atively low validation and test losses.

A nice aspect of training an agent to play the Terminal
tower-defense game is the ease of testing the model in the
real-world against other strategies. We took several differ-
ent trained models, with different hyperparameter configura-
tions and different epoch lengths of training, and pitted them
against each of Terminal’s 3 bots 10 times.

The results are shown in the table below (bots increase in
difficulty left to right):

Bot Levels
Model Easy Medium Hard

CNN Iter 1 9 / 16.3 / 1 7 / 27 / 10 2 / 31.5 / 22.1
ResNet Iter 1 10 / 28 / 0 7 / 30.7 / 10 7 / 30 / 10.3

Table 3: Each model from Iteration 1 played 10 games against
each of the Bots. The first number in each cell denotes the
number of wins out of 10 rounds. The second and third num-
bers are the average absolute health difference at the end of
rounds the model won and lost, respectively.

As can be seen, from Iteration 1, the ResNet model seemed
to perform better in practice, generally. It won just as many
matches, if not more matches, at each of the difficulty levels
than the CNN model. Additionally, with the exception of the
hard bot, when it was played against the easy and medium
bots, for the rounds it won, it had a larger health difference
over its opponent (28 and 30.7). When the ResNet model lost
rounds to the bots, it lost by a smaller margin than did the
CNN model (losing by 0, 10, and 10.3 health on average).

Thus, as observed from Figure 5 and Table 3, it appears
the ResNet model architecture yields the best results, both
in terms of loss curves (Iteration 2) and in-real-world play
(Iteration 1).

Limitations and Future Work
Heuristic Choices : The state space of terminal is im-
mensely large; certain heuristic choices must be made when
determining what state may be valuable to a model dur-
ing training. Moreover, the choices our team made adapted
throughout the process of constructing our Terminal agent, as
can be seen with the differences in state between parser itera-
tions (see Table 2).

Additionally, a large heuristic choice centers on whether
or not action responses are separated between Structure units
and Mobile units. It should be noted that both of these unit
types draw from different resource pools, in which sense it
would be logical to separate policy networks into two more
specialized networks. However, such a choice may eliminate
the possibility for coordination between structure and mobile
units, which is a key element of more advanced strategies.
Moreover, the objective of learning coordination between unit
types was precisely what motivated our second parser itera-
tion cycle. Our team decided upon a single policy network for
these reasons, but it should be noted that future approaches

6

may benefit from separate policy networks for attack and de-
fense.

Data Quality : Behavioral cloning methods function most
optimally when an agent learns a policy based on expert data.
However, there is no specific indication that our data col-
lected at large can be deemed ”expert data”. While our team
roughly selected data from intervals corresponding to season
kick-offs, it is certainly true that our model is learning from
both the winners and the losers of these matches. Future it-
erations of data collection may involve a more involved web
scraper that is able to scraper for specific players found on
public leader boards (top 500 worldwide - which would now
include our matches as well!).

Self-Play Environment : A crucial, exciting area of fu-
ture development in the field of designing a Terminal agent
is ability to perform self-play to avoid the large data overhead
needed to perform behavioral cloning. Moreover, model-
based reinforcement learning methods may yield enticing re-
sults for a Terminal agent given the highly deterministic na-
ture of the game. Our team has designed reward functions
that heuristically combine several features of interest to as-
sign rewards to actions: maintenance of the agent’s health,
decrease to opponent’s health, building contiguous segments
of structural units (calculated via Depth-First-Search + Man-
hattan Distance of connected components), and number of
structural and mobile points left. While our team has been
developing a self-play environment for Terminal that would
open doors to many more avenues of research for the open-
source community, this project is still in development.

Conclusion
We have successfully demonstrated how behavioral cloning
techniques can be applied to the Terminal tower-defense
competition and outperform human-crafted, rule-based algo-
rithms and strategies. Whereas in the past, players would
write hundreds or thousands of lines of code to conditionally
carry out actions based on the game state, we have deployed
a policy network that is able to win a majority of games
against Terminal’s hardest Ironclad bot. Our utilization of be-
havioral cloning places our agent within the top 500 of over
154,000 (top 0.35%) competing algorithms and demonstrates
the promise of Imitation Learning and Reinforcement Learn-
ing techniques for adapting to a strategy-based, tower-defense
game like Terminal.

Our GitHub repository with data collection, model train-
ing, and deployment code can be found here.

Acknowledgments
We would like to acknowledge and thank Professor Mengdi
Wang and Professor Benjamin Eysenbach for their kind feed-
back and guidance on this project.

References
He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep

residual learning for image recognition. arXiv preprint
arXiv:1512.03385. Retrieved from https://arxiv.org/
abs/1512.03385

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998,
November). Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11), 2278–2324.
doi: 10.1109/5.726791

One, C. (n.d.). C1gamesstarterkit. https://github.com/
correlation-one/C1GamesStarterKit. ([Software])

7

https://github.com/ishaanjav/Reinforcement-Learning-for-Terminal-AI-Competition
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://github.com/correlation-one/C1GamesStarterKit
https://github.com/correlation-one/C1GamesStarterKit

	Introduction
	Game Mechanics
	Game Initialization
	Game Board
	Action Space
	Game Rounds and Game Termination

	Data Preparation
	Training an Agent: Behavioral Cloning
	Deploying the Agent
	Results / Experiments
	Limitations and Future Work
	Conclusion
	Acknowledgments
	References

