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Abstract—Character animation for movies and video games
represents one of the most time-intensive and costly aspects
of digital content creation, particularly in rigging and motion
design. While recent advances in unsupervised reinforcement
learning have shown promise in generating physics-based ani-
mations from motion capture data, current approaches still face
challenges in producing consistently natural movements with low
pose error. This paper explores modifications to the Adversarial
Motion Priors (AMP) framework to reduce pose error for specific
motion tasks, focusing on walking animations. We propose two
algorithmic modifications to the base AMP approach: (1) an
adaptive reward weighting system based on relative losses, and
(2) a hierarchical discriminator architecture. Additionally, we
investigate the impact of using targeted datasets versus general
motion capture collections. Our experiments demonstrate that
while these modifications did not outperform the baseline AMP
implementation, they provide valuable insights into the robust-
ness of the original algorithm and suggest promising directions
for future research in physics-based character animation.

Index Terms—Reinforcement Learning, Character Animation,
Adversarial Motion Priors, Physics-Based Animation, Motion
Capture

I. INTRODUCTION

THE field of character animation faces unprecedented
computational challenges as the demand for increasingly

realistic and dynamic virtual characters grows across multi-
ple industries. Traditional animation techniques, which rely
heavily on manual keyframing and motion capture, are both
time-consuming and financially prohibitive. A comprehensive
benchmark by Duan et al. [1] highlights the computational
complexity inherent in continuous control tasks, which directly
relates to the challenges of generating natural character move-
ments.

Unsupervised reinforcement learning has emerged as a
promising paradigm for addressing these computational chal-
lenges. The work of Ho and Ermon [2] on generative adver-
sarial imitation learning provides a foundational framework
for understanding how machine learning can capture and
reproduce complex movement patterns. By treating character
animation as a learning problem, researchers can develop
systems that can generate natural, physics-based movements
with minimal manual intervention.

The evolution of physics-based character control demon-
strates a clear trajectory of technological advancement. Early
work by Coros et al. [3] on generalized biped walking con-
trol laid the groundwork for more sophisticated approaches.
Their research showed that it was possible to create walking

controllers that could adapt to different gaits and character
proportions without character-specific tuning.

A. Computational Frameworks for Motion Generation

Several key computational frameworks have advanced the
field of character animation. Trajectory optimization tech-
niques pioneered by Al Borno et al. [4] demonstrated that
complex motions like flips and walks could be generated using
simple objective terms, emphasizing the importance of contact
handling and momentum objectives.

Variational approaches introduced by Ling et al. [5] pro-
vided new insights through Motion Variational Autoencoders
(Motion VAEs). Their method uses an auto-regressive model
for pose transitions, capable of handling different motion
styles and character proportions through scheduled sampling
techniques.

B. Adversarial Learning Innovations

Adversarial learning approaches have been particularly
transformative in the field of character animation. Ho and
Ermon [2] introduced a fundamental framework for learning
policies through adversarial techniques, providing insights
into how machine learning can capture complex movement
patterns. DeepMimic [6] represented a comprehensive method
for physics-based imitation learning from motion capture data,
capable of reproducing dynamic and acrobatic skills. Building
on this foundation, Adversarial Motion Priors (AMP) [7]
introduced a framework that uses a discriminator to encourage
natural motion while accomplishing specific tasks, eliminating
the need for manual reward engineering. Most recently, Ad-
versarial Skill Embeddings (ASE) [8] developed large-scale
reusable skill embeddings that can be applied across diverse
tasks, showing improvements in motion quality and diversity.

C. Research Objectives and Contributions

Building upon these advanced frameworks, this research
focuses on modifications to the Adversarial Motion Priors
(AMP) approach. Our primary contributions are:

1) An adaptive reward weighting system that dynamically
adjusts based on relative losses during training

2) A hierarchical discriminator architecture designed to
capture both local and global motion characteristics

3) An empirical evaluation of dataset specialization effects
on motion quality
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Fig. 1. Original AMP Pipeline architecture showing the interaction between
policy, discriminator, and reference motion database [7].

4) Insights into the robustness and limitations of the AMP
framework

Our primary objective is to reduce pose error for specific
motion tasks, with a particular focus on walking animations.
By investigating these modifications and exploring the impact
of specialized versus general motion capture datasets, we aim
to provide insights into improving physics-based character
animation techniques.

The remainder of this paper is organized as follows. Section
II provides a comprehensive review of related work. Section
III details our proposed modifications to the AMP framework.
Section IV describes implementation details and experimental
setup. Section V presents results and analysis. Finally, Section
VI concludes with a discussion of our findings and potential
directions for future research.

II. BACKGROUND AND RELATED WORK

Character animation has undergone significant transforma-
tions with the advent of computational techniques, particularly
those leveraging machine learning approaches. This section
provides a comprehensive overview of the key methodologi-
cal developments that inform our research on physics-based
character animation.

A. Traditional Character Animation Approaches

Historically, character animation has been a labor-intensive
process dominated by two primary methodologies: hand-
crafted keyframe animations and motion capture data adap-
tation. These traditional approaches require extensive manual
intervention from skilled artists, making them time-consuming
and expensive.

Keyframe animation demands painstaking frame-by-frame
manipulation, where animators manually define the position
and pose of characters at specific points in time. This approach
provides precise control but requires immense technical skill
and time investment. Motion capture techniques, while more
naturalistic, still require significant post-processing and adap-
tation of recorded human movements to fit specific character
models and scenarios.

B. Physics-Based Character Control

The emergence of physics-based character control repre-
sents a significant advancement in animation technology. Early
work by Coros et al. [3] demonstrated the potential for
generalized biped walking control that could adapt to various
gaits and character proportions. Their approach integrated
tracking, foot placement, and gravity compensation, provid-
ing a foundational framework for more sophisticated motion
generation techniques.

C. Reinforcement Learning in Motion Generation

Reinforcement learning has emerged as a powerful
paradigm for generating realistic character animations. The
DeepMimic framework [6] allowed for a comprehensive
method of physics-based imitation learning from motion
capture data. This approach successfully reproduced highly
dynamic and acrobatic skills by leveraging reference state
initialization and early termination strategies. Tessler et al. [9]
introduced Conditional Adversarial Latent Models (CALM),
which enable motion control through semantically meaningful
embeddings. This approach supports diverse input modalities
like text commands, target poses, and object interactions.

1) Auto-Regressive and Diffusion Models: Emerging tech-
niques like auto-regressive motion diffusion models [10] have
introduced lightweight architectures for real-time motion syn-
thesis. These approaches support multiple control methods,
including sampling, inpainting, and hierarchical control, capa-
ble of handling diverse motion tasks such as target reaching
and directional control.

2) Representation Learning in Motion: Advances in repre-
sentation learning have been crucial to progress in character
animation. As mentioned in the previous section, Ling et al. [5]
developed Motion Variational Autoencoders (Motion VAEs)
that can generate character animations through auto-regressive
pose transition models. These approaches can handle different
motion styles and character proportions, introducing more
flexibility in animation generation.

D. Challenges in Motion Generation

Despite significant advances, several challenges persist in
physics-based character animation: (1) maintaining consistent
pose accuracy across complex movements, (2) generating
natural-looking motions that span diverse scenarios, (3) reduc-
ing computational complexity for real-time applications, and
(4) adapting to varied character morphologies and movement
styles. These challenges underscore the continued need for in-
novative approaches in character animation, particularly those
that can generalize across different motion tasks and character
types.

E. Emerging Research Directions

Recent work, such as the MaskedMimic framework [11],
suggests promising directions for future research. This ap-
proach unifies physics-based character control through masked
motion inpainting, demonstrating a potential for more flexible
and adaptable motion generation techniques that can work
across varied terrains and body shapes.
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Fig. 2. Style reward computation in AMP training [7].

Fig. 3. Original AMP algorithm training procedure [7].

III. METHODOLOGY

In this work, we propose two key modifications to the base-
line Adversarial Motion Priors (AMP) algorithm to improve
pose accuracy for walking animations.

A. Adaptive Reward Weighting

The first modification introduces an adaptive reward weight-
ing scheme based on the relative losses during training. The
original AMP algorithm calculates a style reward rt as shown
in Figure 2.

We propose to add an adaptive weighting factor α that
adjusts based on the relative magnitude of the pose loss and
discriminator loss:

rt = (1− α) · wT
poser

pose
t + α · wT

discr
disc
t (1)

where α is initialized to 0.5 and updated dynamically during
training based on the relative magnitudes of the pose and
discriminator losses. The intuition is that when the pose loss is
high compared to the discriminator loss, we should rely more
on the pose objective to guide the policy updates, and vice
versa.

Algorithm 1 Training with Adaptive AMP
1: Input: M: dataset of reference motions
2: α← 0.5 {initialize adaptive weight}
3: D ← initialize discriminator
4: π ← initialize policy
5: V ← initialize value function
6: B ← ∅ {initialize reply buffer}
7: while not done do
8: for trajectory i = 1, . . . ,m do
9: τ i ← {(st, at, rGt )T−1

t=0 , sGT , g}
10: for time step t = 0, . . . , T − 1 do
11: dt ← D(Φ(st),Φ(st+1))
12: rSt ← calculate style reward using dt
13: rt ← (1− α)wGrGt + αwSrSt
14: record rt in τ i

15: end for
16: store τ i in B
17: end for
18: for update step = 1, . . . , n do
19: bM ← sample batch of K transitions {(sj , s′j)}Kj=1

from M
20: bπ ← sample batch of K transitions {(sj , s′j)}Kj=1

from B
21: update D using bM and bπ

22: end for
23: update V and π using trajectories {τ i}mi=1

24: α← update based on relative losses
25: end while

B. Hierarchical Discriminator

The second modification employs a hierarchical discrimina-
tor architecture, with separate local and global discriminators.
The local discriminator focuses on capturing detailed, frame-
level motion characteristics, while the global discriminator
aims to model the overall motion patterns. The combined
reward is calculated as:

rt = wT
localr

local
t + wT

globalr
global
t (2)

where rlocal
t and rglobal

t are the local and global discriminator
rewards, respectively. The weights wlocal and wglobal are learned
during training.

The intuition behind this hierarchical approach is that it may
better capture the complex, multi-scale structure of natural
human motion, leading to more accurate character animations.

C. Dataset Selection

In addition to the algorithmic modifications, we also inves-
tigate the impact of using a more specialized dataset versus
a general motion capture collection. Specifically, we compare
the performance of the AMP algorithm on the full AMASS
dataset versus the HumanEva dataset, which focuses on basic
actions like walking, jogging, and gesturing.

The reasoning behind this experiment is that the AMASS
dataset, while comprehensive, may contain a large diversity
of motion styles that could make it challenging for the AMP
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Algorithm 2 Training with Hierarchical AMP
1: Input: M: dataset of reference motions
2: DL, DH ← initialize local and global discriminators
3: π ← initialize policy
4: V ← initialize value function
5: B ← ∅ {initialize reply buffer}
6: while not done do
7: for trajectory i = 1, . . . ,m do
8: τ i ← {(st, at, rGt )T−1

t=0 , sGT , g}
9: for time step t = 0, . . . , T − 1 do

10: dLt ← DL(ΦL(st),ΦL(st+1))
11: dHt ← DH(ΦH(st:t+k))
12: rSt ← calculate combined style reward
13: rt ← wGrGt + wSrSt
14: record rt in τ i

15: end for
16: store τ i in B
17: end for
18: for update step = 1, . . . , n do
19: bM ← sample batch of K transitions {(sj , s′j)}Kj=1

from M
20: bπ ← sample batch of K transitions {(sj , s′j)}Kj=1

from B
21: update DL, DH using bM and bπ

22: end for
23: update V and π using trajectories {τ i}mi=1

24: end while

Fig. 4. Pose error computation methodology [7].

agent to specialize on the simple task of walking. In contrast,
the HumanEva dataset might provide a more targeted training
signal for this specific motion.

By combining these algorithmic and dataset-based ap-
proaches, we aim to develop improved physics-based character
animation techniques that maintain high pose accuracy for
fundamental locomotion tasks.

IV. IMPLEMENTATION AND EVALUATION

A. Implementation Details

For our implementation, we built upon the existing code-
base provided in the ProtoMotions library1, which utilizes
NVIDIA’s Isaac Sim as the physics simulation backbone. The
two proposed modifications to the baseline AMP algorithm
were implemented as described in Algorithms 1 and 2.

To evaluate the performance of our modifications, we com-
pared the pose error of the generated animations against the
baseline AMP implementation. The pose error is calculated
using the equation shown in Figure 4, which takes the average
Euclidean distance between the generated joint positions and
the ground truth reference motion.

1https://github.com/NVlabs/ProtoMotions

B. Experimental Setup

We conducted experiments using the following configura-
tions:

• Baseline: Original AMP algorithm trained on full
AMASS dataset

• Algorithm 1: Adaptive reward weighting on AMASS
dataset

• Algorithm 2: Hierarchical discriminator on AMASS
dataset

• Algorithm 1+Custom: Adaptive reward weighting on
HumanEva dataset

• Algorithm 2+Custom: Hierarchical discriminator on Hu-
manEva dataset

All experiments were run with consistent hyperparameters
to ensure fair comparison.

V. RESULTS AND ANALYSIS

A. Quantitative Results

Figure 5 presents the pose error evolution for all experi-
mental configurations. The results reveal several key insights
about the performance of our proposed modifications.

1) Baseline AMP Performance: As shown in Figure 5(a),
the baseline AMP algorithm trained on the full AMASS
dataset demonstrates robust performance. The pose error starts
high but gradually decreases over the course of training,
converging to a relatively low value of approximately 0.02
after completion of all iterations.

2) Adaptive Reward Weighting: The performance of the
adaptive reward weighting modification (Algorithm 1) is
shown in Figure 5(b). While the initial pose error is lower than
the baseline, the error increases over time and does not match
the final performance of the original AMP implementation.
This suggests that the dynamic adjustment of weights may
introduce instability in the learning process.

3) Hierarchical Discriminator: Figure 5(c) presents the
results of using the hierarchical discriminator architecture
(Algorithm 2). Similar to the adaptive reward weighting, the
initial pose error is lower, but the performance does not
surpass the baseline as training progresses. The multi-scale
approach, while theoretically sound, appears to complicate the
optimization landscape.

4) Custom Dataset Evaluation: When switching to the
more specialized HumanEva dataset, neither Algorithm 1 (Fig-
ure 5(d)) nor Algorithm 2 yielded improved results compared
to the baseline AMP implementation on the full AMASS
dataset.

B. Comparative Analysis

Figure 7 combines the pose error plots for all experiments.
The baseline AMP implementation on the AMASS dataset
(blue line) consistently outperforms the proposed modifica-
tions, regardless of the dataset used. This demonstrates the
robustness of the original AMP design.

https://github.com/NVlabs/ProtoMotions
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(a) Baseline AMP + AMASS Dataset (b) Algorithm 1 (Adaptive) + AMASS

(c) Algorithm 2 (Hierarchical) + AMASS (d) Algorithm 1 + HumanEva Dataset

Fig. 5. Pose error evolution across different algorithm configurations and datasets. (a) shows the baseline AMP performance, (b-c) show our proposed
modifications on AMASS, and (d) shows adaptive weighting on the specialized HumanEva dataset.

C. Discussion

The results indicate that the baseline AMP algorithm re-
mains a robust and effective framework for generating physics-
based character animations, at least for the specific task of
walking. While our proposed modifications aimed to improve
pose accuracy, they did not yield the expected performance
gains.

Several factors may have contributed to this outcome:

1) Adaptive Weighting Instability: The adaptive reward
weighting approach, while intuitively reasonable, may
not have been able to capture the complex interplay be-
tween the pose and discriminator objectives effectively.

2) Hierarchical Complexity: The hierarchical discrimina-
tor architecture may have introduced additional com-
plexities that outweighed the benefits. The intuition
behind the approach was to learn the multi-structure
nature of walking as if via learning expert sub-networks,
but it is unclear that this heuristic intent transferred into
actual implementation.

3) Dataset Diversity: The HumanEva dataset may not
have provided a sufficiently diverse and robust training
signal to enable specialization beyond the baseline AMP
performance. The larger AMASS dataset likely yielded
better results because it exposes the AMP agent to a
greater amount of motion priors implicit in the data.

D. Limitations and Future Work

It is important to note that the scope of this work was limited
to the specific task of walking animations. While the results
suggest that the baseline AMP algorithm is well-suited for
this particular use case, the performance may not generalize to
more complex motion patterns or diverse animation scenarios.

The AMASS dataset comprises multiple subsets (ACCAD,
BMLhandball, BMLmovi, BMLrub, CMU, CNRS, DanceDB,
DFaust, EKUT, EyesJapanDataset, GRAB, HDM05, HU-
MAN4D, HumanEva, KIT, MoSh, PosePrior, SFU, SOMA,
SSM, TCDHands, TotalCapture, Transitions, WEIZMANN),
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Fig. 6. Algorithm 2 (Hierarchical) + HumanEva Dataset.

Fig. 7. Comparative analysis of pose error across all experimental configu-
rations.

any of which could be used for more targeted experiments in
future work.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we have investigated several approaches to
improving the pose accuracy of physics-based character ani-
mations generated using the Adversarial Motion Priors (AMP)
framework. Drawing upon the existing body of research in
this domain, we proposed two key modifications to the AMP
algorithm—an adaptive reward weighting scheme and a hi-
erarchical discriminator architecture—with the goal of better
capturing the nuances of human walking motions.

While our experimental results did not conclusively demon-
strate the efficacy of these specific algorithmic changes, the
investigations have provided valuable insights into the robust-
ness and limitations of the baseline AMP approach. The failure
to outperform the original AMP implementation suggests that

the core algorithm is to some extent well-tuned for general
motion generation, and that further improvements may require
more fundamental changes to the framework.

Future research could explore alternative approaches to
improving pose accuracy, such as incorporating motion repre-
sentation learning techniques like the Adversarial Skill Embed-
dings (ASE) [8] or the Conditional Adversarial Latent Models
(CALM) [9]. These methods may provide a more holistic
understanding of human motion, potentially leading to better-
performing character animation systems.

Additionally, the MaskedMimic framework [11], which uni-
fies physics-based control through masked motion inpainting,
could offer a more promising direction for developing versatile
character animation techniques that can handle a broad range
of behaviors and control modalities.

By continuing to build upon the foundations established in
this work and the broader research landscape, future efforts can
further advance the state of the art in physics-based character
animation, enabling the creation of increasingly realistic and
responsive virtual agents.
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