Applying Methods in RL to Character Animation Unsupervised RL IW Seminar

Topic Agenda (Approx 9 min.)

- **Motivation & Goal**
- **Problem Background**
- **Related Work**
- **Approach**
 - AMP Mod 1
 - AMP Mod 2
 - **Custom Dataset**
- **Implementation**
 - **Code Review**
- Results
- Conclusion
 - **Future Work**

Motivation & Goal

Motivation & Goal

- Generation of assets for animated movies / games takes a lot of work! Involves creation of:
 - o 3D Mesh
 - Textures
 - Rigging
 - Animation of Rigging
- Prior methods in using motion tracking to generate animation sequences have proven to
 be data-intensive and expensive
- Unsupervised RL is well suited to learning distributional characteristics of certain motions
- Personal Interest

Goal

"Can we reduce pose error for Adversarial Motion Planning (AMP) agents for specific tasks (walking) by using custom training data or applying modifications to the base algorithm?

Problem & Background

Diving into AMP

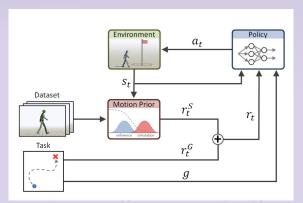
- Enables physics-based characters to learn natural movements from
 unstructured motion data without manual reward engineering or explicit
 motion planning
- Uses adversarial training to develop a motion prior that guides character
 behavior to match reference motion styles
- Combines task objectives with learned motion priors

Learns motion prior D(st, st+1) as discriminator trained to differentiate between real motion transitions from dataset vs those generated by policy π

The discriminator is trained by solving a least-squares regression problem to predict a score of 1 for samples from the dataset and -1 for samples recorded from the policy. The reward function for training the policy is then given by

$$r(s_t, s_{t+1}) = \max \left[0, \ 1 - 0.25(D(s_t, s_{t+1}) - 1)^2 \right].$$
 (7)

The additional offset, scaling, and clipping are applied to bound the reward between [0, 1], as is common practice in previous RL frameworks [Peng et al. 2018a, 2016; Tassa et al. 2018]. Mao et al. [2017] showed that this least-squares objective minimizes the Pearson χ^2 divergence between $d^{\mathcal{M}}(\mathbf{s},\mathbf{s}')$ and $d^{\pi}(\mathbf{s},\mathbf{s}')$.



Diving into AMP

ALGORITHM 1: Training with AMP

```
1: input M: dataset of reference motions
 2: D \leftarrow initialize discriminator
 3: \pi \leftarrow initialize policy
 4: V \leftarrow initialize value function
 5: \mathcal{B} \leftarrow \emptyset initialize reply buffer
  6: while not done do
          for trajectory i = 1, ..., m do
              \tau^i \leftarrow \{(\mathbf{s}_t, \mathbf{a}_t, r_t^G)_{t=0}^{T-1}, \mathbf{s}_T^G, \mathbf{g}\} collect trajectory with \pi for time step t=0,...,T-1 do
                  d_t \leftarrow D(\Phi(\mathbf{s}_t), \Phi(\mathbf{s}_{t+1}))
                  r_t^S \leftarrow calculate style reward according to Equation 7 using d_t
                  r_t \leftarrow w^G r_t^G + w^S r_t^S
                  record r_t in \tau^i
               end for
              store \tau^i in \mathcal{B}
          end for
          for update step = 1, ..., n do
              b^{\mathcal{M}} \leftarrow \text{sample batch of } K \text{ transitions } \{(\mathbf{s}_j, \mathbf{s}_j')\}_{j=1}^K \text{ from } \mathcal{M}
              b^{\pi} \leftarrow \text{ sample batch of } K \text{ transitions } \{(\mathbf{s}_j, \mathbf{s}_j')\}_{i=1}^K \text{ from } \mathcal{B}
19:
              update D according to Equation 8 using b^{\mathcal{M}} and b^{\pi}
          end for
          update V and \pi using data from trajectories \{\tau^i\}_{i=1}^m
23: end while
```

and 7 illustrate examples of motions learned by the characters. Performance is evaluated using the average pose error, where the pose error e_t^{pose} at each time step t is computed between the pose of the simulated character and the reference motion using the relative positions of each joint with respect to the root (in units of meters),

$$e_t^{\text{pose}} = \frac{1}{N^{\text{joint}}} \sum_{j \in \text{joints}} \left\| (\mathbf{x}_t^j - \mathbf{x}_t^{\text{root}}) - (\hat{\mathbf{x}}_t^j - \hat{\mathbf{x}}_t^{\text{root}}) \right\|_2.$$
 (10)

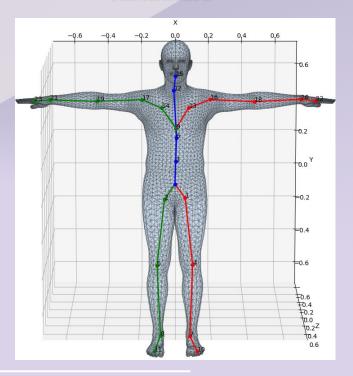
 \mathbf{x}_t^j and $\hat{\mathbf{x}}_t^j$ denote the 3D Cartesian position of joint j from the simulated character and the reference motion, and N^{joint} is the total number of joints in the character's body. This method of evaluating

Related Work

Related Work

IsaacSim

HumanML3D



Related Work

ProtoMotions: Physics-based Character Animation

"Primitive or fundamental types of movement that serve as a basis for more complex motions."

- · What is this?
- Installation guide
- Training built-in agents
- Evaluating your agent
- · Building your own agent/environment

What is this?

This codebase contains our efforts in building interactive physically-simulated virtual agents. It supports both IsaacGym and IsaacSim.



Approach

Approach

Algorithm 1 Training with Adaptive AMP

```
Input: \mathcal{M}: dataset of reference motions
\alpha \leftarrow 0.5 {initialize adaptive weight}
D \leftarrow \text{initialize discriminator}
\pi \leftarrow \text{initialize policy}
V \leftarrow initialize value function
\mathcal{B} \leftarrow \emptyset {initialize reply buffer}
while not done do
    \begin{array}{ll} \textbf{for} \ \text{trajectory} \ i = 1, \ldots, m \ \textbf{do} \\ \tau^i \leftarrow \{(s_t, a_t, r_t^G)_{t=0}^{T-1}, s_T^G, g\} \ \{\text{collect trajectory with} \ \pi\} \end{array} 
      for time step t = 0, \dots, T-1 do
          d_t \leftarrow D(\Phi(s_t), \Phi(s_{t+1}))
          r_t^S \leftarrow calculate style reward according to Equation 7 using d_t
          r_t \leftarrow (1-\alpha)w^G r_t^G + \alpha w^S r_t^S {adaptive weighting}
          record r_t in \tau^i
       end for
       store \tau^i in \mathcal{B}
   end for
   for update step = 1, \ldots, n do
       b^{\mathcal{M}} \leftarrow \text{sample batch of } K \text{ transitions } \{(s_j, s_j')\}_{j=1}^K \text{ from } \mathcal{M}
      b^{\pi} \leftarrow \text{sample batch of } K \text{ transitions } \{(s_j, s'_i)\}_{i=1}^{K} \text{ from } \mathcal{B}
      update D according to Equation 8 using b^{\mathcal{M}} and b^{\pi}
   end for
   update V and \pi using data from trajectories \{\tau^i\}_{i=1}^m
   \alpha \leftarrow update adaptive weight based on relative losses
end while
```

Algorithm 2 Training with Hierarchical AMP

```
Input: \mathcal{M}: dataset of reference motions
D_L, D_H \leftarrow initialize local and global discriminators
\pi \leftarrow \text{initialize policy}
V \leftarrow initialize value function
\mathcal{B} \leftarrow \emptyset {initialize reply buffer}
while not done do
   for trajectory i = 1, \ldots, m do
       \tau^i \leftarrow \{(s_t, a_t, r_t^G)_{t=0}^{T-1}, s_T^G, g\}  {collect trajectory with \pi}
       for time step t = 0, \dots, T-1 do
          d_t^L \leftarrow D_L(\Phi_L(s_t), \Phi_L(s_{t+1})) \text{ {local features}} 
d_t^H \leftarrow D_H(\Phi_H(s_{t:t+k})) \text{ {global features}}
          r_t^S \leftarrow \text{calculate combined style reward using } d_t^L, d_t^H
          r_t \leftarrow w^G r_t^G + w^S r_t^S
          record r_{t} in \tau^{i}
       end for
       store \tau^i in \mathcal{B}
    end for
    for update step = 1, \ldots, n do
       b^{\mathcal{M}} \leftarrow \text{sample batch of } K \text{ transitions } \{(s_i, s_i')\}_{i=1}^K \text{ from } \mathcal{M}
       b^{\pi} \leftarrow \text{sample batch of } K \text{ transitions } \{(s_j, s_i')\}_{i=1}^K \text{ from } \mathcal{B}
       update D_L, D_H according to Equation 8 using b^{\mathcal{M}} and b^{\pi}
    end for
   update V and \pi using data from trajectories \{\tau^i\}_{i=1}^m
end while
```

Approach

- AMASS dataset is comprised of the following subsets:
 - ACCAD, BMLhandball, BMLmovi, BMLrub, CMU, CNRS, DanceDB, DFaust, EKUT,
 EyesJapanDataset, GRAB, HDM05, HUMAN4D, HumanEva, KIT, MoSh, PosePrior, SFU, SOMA,
 SSM, TCDHands, TotalCapture, Transitions, WEIZMANN
- Selected Subset: HumanEva Dataset
 - o http://humaneva.is.tue.mpg.de/
 - Focuses on basic human actions
 - Walking, jogging, gesturing
 - Reasoning: try to avoid overfitting for the simple task of walking humanoid

Implementation

Implementation (Algo 1)

New

```
def calculate_extra_reward(self):
    rew = super().calculate extra reward()
    if self.disable discriminator:
        return rew
   discriminator_obs = self.experience_buffer.discriminator_obs
   disc r = self.calculate discriminator reward(
        discriminator_obs.view(self.num_envs * self.num_steps, -1)
    ).view(self.num steps, self.num envs)
    self.experience buffer.batch update data("discriminator rewards", disc r)
    extra reward = disc r + rew
    return extra_reward
```

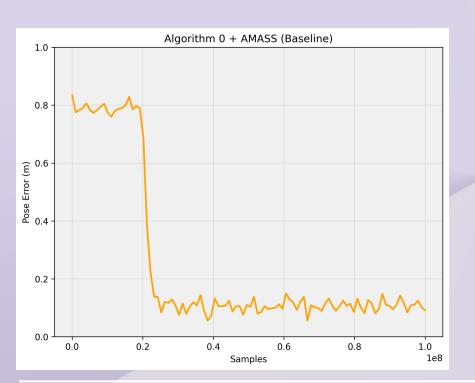
Old

Implementation (Algorithm 2)

Old

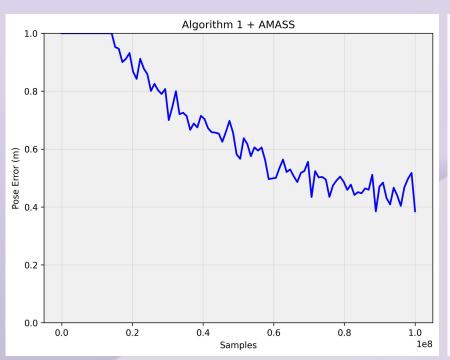
```
def discriminator_forward(self, obs: Tensor, return_norm_obs=False) -> Tensor:
    args = {"obs": obs}
    return self.discriminator(args, return_norm_obs=return_norm_obs)
```

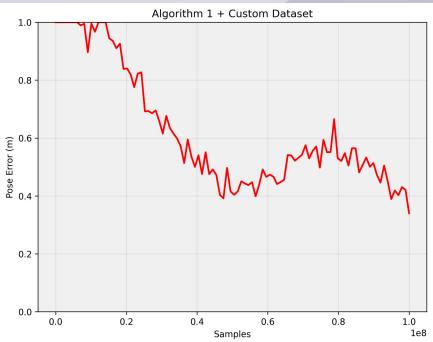
New

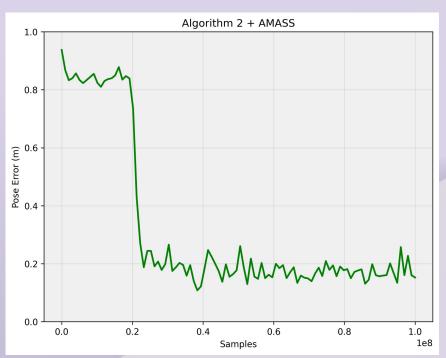


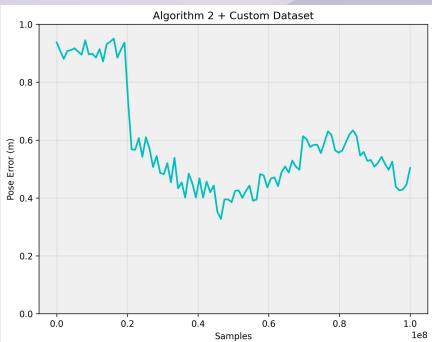
$$e_t^{\mathrm{pose}} = \frac{1}{N^{\mathrm{joint}}} \sum_{j \in \mathrm{joints}} \left\| (\mathbf{x}_t^j - \mathbf{x}_t^{\mathrm{root}}) - (\hat{\mathbf{x}}_t^j - \hat{\mathbf{x}}_t^{\mathrm{root}}) \right\|_2.$$

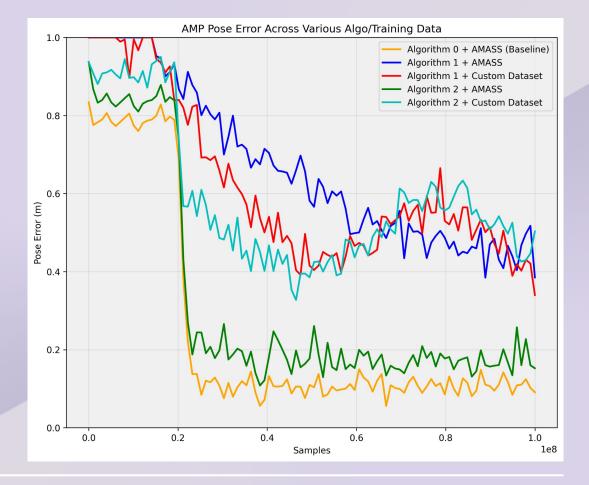
(Pose Error compared to motion file provided in ProtoMotions repo for basic humanoid walking)











Conclusion

Conclusion

- Future Work
 - Try different subsets of the AMASS dataset
 - Experiment with different task focuses or try a generalized implementation
 - Experiment with different adjustments to AMP base algorithm
- Importance
 - Contribute to reducing expense/labor of animation for movies / games
 - Train agents to understand characteristics of motion from motion capture data