Applying Methods in RL to Character Animation
Unsupervised RL IW Seminar

O crda
[opic Ager

v 44 4
f
Yo) o)

Motivation is

8 the Key to
Success™i|

Motivation & Goal

o Animation of Rigging

“Can we reduce pose error for Adversarial Motion
Planning (AMP) agents for specific tasks (walking)
by using custom training data or applying
modifications to the base algorithm?

Probleny & Background

Learns motion prior D(st, st+1) as discriminator trained to differentiate between

real motion transitions from dataset vs those generated by policy

The discriminator is trained by solving a least-squares regression
problem to predict a score of 1 for samples from the dataset and
—1 for samples recorded from the policy. The reward function for
training the policy is then given by

r(st,se41) =max [0, 1-0.25(D(sp,541) - 1)2]. (7)
The additional offset, scaling, and clipping are applied to bound the
reward between [0, 1], as is common practice in previous RL frame-
works [Peng et al. 2018a, 2016; Tassa et al. 2018]. Mao et al. [2017]
showed that this least-squares objective minimizes the Pearson y2
divergence between dM (s,s’) and d” (s, s").

Environment Policy
= at

o) <S8

Dataset v

Tt

ALGORITHM 1: Training with AMP

1: input M: dataset of reference motions
2: D « initialize discriminator

3: 7 « initialize policy

4: V « initialize value function

5: B « 0 initialize reply buffer

6: while not done do

7:

8:

9:
10:
11:
12:
13:
14:
15:
16:

17:
18:
19:

20:
21:

22:

for trajectory i = 1,...,m do
ot — {(sp, as, rtc;)z;’()l, s?, g} collect trajectory with 7
for timestep £ =0,....,T — 1 do
dr « D(®(st), @(s24+1))
rf « calculate style reward according to Equation 7 using d;
re — wOrS + whr?
record ry in ¥
end for
store 7! in B
end for

for update step=1,...,n do
bM «— sample batch of K transitions {(s m s:i) };(: , from M
b’ « sample batch of K transitions {(s;, s}) }f: , from B

update D according to Equation 8 using b and b”
end for

update V and 7 using data from trajectories {! };Zl

23: end while

and 7 illustrate examples of motions learned by the characters. Per-
formance is evaluated using the average pose error, where the pose
error efose at each time step t is computed between the pose of
the simulated character and the reference motion using the relative

positions of each joint with respect to the root (in units of meters),

> e - xeot - & - gpeet (10)

j€joints

pose 1
€ =
t Njoint

x{ and)2{ denote the 3D Cartesian position of joint j from the

simulated character and the reference motion, and N joint i< the total
number of joints in the character’s body. This method of evaluating

1 .. 1 . 1 1 . 1 . 1 - ~

Relared Worls

HumanML3D

IsaacSim

NVIDIA.

ISAAC

ProtoMotions: Physics-based Character Animation

1 i e l a Z.e d l l 0 I/' k “Primitive or fundamental types of movement that serve as a basis for more complex motions.”

o Installation guide

o Training built-in agents

 Evaluating your agent

* Building your own agent/environment

What is this?

This codebase contains our efforts in building interactive physically-simulated virtual agents. It supports both
IsaacGym and IsaacSim.

Contact:
COS IW: Unsupervised RL Seminar Shivam Kak | 6307700880 | sk3686@princeton.edu Prof. Benjamin Eysenbach

Algorithm 1 Training with Adaptive AMP

Input: M: dataset of reference motions
a <+ 0.5 {initialize adaptive weight}
D « initialize discriminator
7 < initialize policy
V < initialize value function
B «+ (0 {initialize reply buffer}
while not done do
for trajectory i =1,...,m do
T8 {(s¢, a5,)T, 5,9} {collect trajectory with }
for time step t =0,...,7 — 1 do
dy = D(D(s¢), D(5¢41))
ry « calculate style reward according to Equation 7 using d
7y (1 — a)wCrf 4+ awSry {adaptive weighting}
record 7; in 7¢
end for
store 7 in B
end for
for update step = 1,...,n do
b™ « sample batch of K transitions {(s;, s})}%, from M
b™ +— sample batch of K transitions {(s;,s})}/, from B
update D according to Equation 8 using b and 6™
end for
update V and 7 using data from trajectories {7¢}7,
a + update adaptive weight based on relative losses
end while

Algorithm 2 Training with Hierarchical AMP

Input: M: dataset of reference motions
Dy, Dy <+ initialize local and global discriminators
7 < initialize policy
V « initialize value function
B « 0 {initialize reply buffer}
while not done do
for trajectory i =1,...,m do
7t {(st, a6, 78) 1, 5G, g} {collect trajectory with 7}
for time step t =0,...,7 — 1 do
d¥ « Dp(®r(st),®L(st41)) {local features}
dfl Dy (®u(set+k)) {global features}
ry « calculate combined style reward using d¥, d
re — wCrf + wSrd
record r; in 7
end for
store 7¢ in B
end for
for update step = 1,...,n do
b™ < sample batch of K transitions {(s;,)}, from M
b™ + sample batch of K transitions {(s;, s;)}f;l from B
update Dy, Dy according to Equation 8 using b and b™
end for
update V and 7 using data from trajectories {7},
end while

AMASS dataset is comprised of the following subsets:

o ACCAD, BMLhandball, BMLmovi, BMLrub, CMU, CNRS, DanceDB, DFaust, EKUT,
EyesJapanDataset, GRAB, HDMO05, HUMAN4D, HumanEva, KIT, MoSh, PosePrior, SFU, SOMA,
SSM, TCDHands, TotalCapture, Transitions, WEIZMANN

p

Selected Subset: HumanEva Dataset
(e}
o Focuses on basic human actions
o Walking, jogging, gesturing
o Reasoning: try to avoid overfitting for the simple task of walking humanoid

http://humaneva.is.tue.mpg.de/

[mplementation

d(self): - -ula L_‘_ ra_r "J(Self):
().calculate_extra_reward() ~ewW = () . Calculate_ext ra_rewa rd()

if self.disable_discriminator:
return rew

= f.experience_buffer.discriminator_obs
calculate_discriminator_reward(
.view(self.num_envs x .num_steps, -1)

).view(self.num_steps, self.num_envs) (rimina "v”'__ObS = self .experience_buffer.discriminator_obs
e1f.calculate_discriminator_reward(
self.style_reward_history.append(L ().item()) o . . =y 11 A £
Lf.task_reward_history.append(t ().item()) : & \'VIeW(JLL[-NUM_ENVs * ¢ L .nUm_StepS,
).view(self.num_steps, self.num_envs)
Lf.alpha) * task_rew + self.alpha * style_rew

self.experience_buffer.batch_update_data("discriminator_rewards",

-
return

Old

Old

def discriminator forward(self, obs: , return_norm_obs=False) —->

args = {"obs": obs}
return self.discriminator(args, return_norm_obs=return_norm_obs)

d(self, obs: , return_norm_obs=False) —>

, :self.local_feature_dim]

yred = self.local_discriminator({"obs": local_features},

return_norm_obs=return_no
bred = self.global_discriminator({"obs": g
return_norm_o

if return_norm_obs:
return {

"outs":

norm_o -
) New

return combined_pred

Results

1.0

0.8 1

Pose Error (m)

0.2 1

0.0

Algorithm 0 + AMASS (Baseline)

°
o
|

o
>
L

0.0

0.2

0.4

Samples

0.6

0.8

1.0
le8

’ 1 i aj &
e?osc - e Z H(x{ _ xgoot _ (X{ _ x;oot
j€joints

-

(Pose Error compared to motion file
provided in ProtoMotions repo for basic
humanoid walking)

Pose Error (m)

1.0

Algorithm 1 + AMASS

0.8 1

0.6

0.4 4

0.2 1

0.0

0.0

0.2

0.4

Samples

0.6

0.8

1.0
le8

Pose Error (m)

1.0

Algorithm 1 + Custom Dataset

0.8 1

0.6

0.4 1

0.2 1

0.0

0.0

0.2

0.4

Samples

0.6

0.8

1.0
le8

Pose Error (m)

Algorithm 2 + AMASS

1.0

0.8 1

0.6

0.4 4

0.2 1

0.0

0.0

0.2

0.4

Samples

0.6

0.8

1.0
le8

Pose Error (m)

1.0

Algorithm 2 + Custom Dataset

0.8 1

0.6

0.4 4

0.2 1

0.0

0.0

0.2

0.4

Samples

0.6

0.8

1.0
1le8

Pose Error (m)

AMP Pose Error Across Various Algo/Training Data

1.0

0.8

0.6 1

0.4 1

0.2 1

"'\/y /)

Algorithm 0 + AMASS (Baseline)
Algorithm 1 + AMASS
Algorithm 1 + Custom Dataset
Algorithm 2 + AMASS
Algorithm 2 + Custom Dataset

m’"“'ﬂ\

0.0

0.0

0.2

0.4

Samples

0.6

0.8 1.0
le8

('///,/f,‘/,//‘!/'////

