Fine-Tuning Stable Diffusion for Kanji Generation | Builders Blog | Jan 2025

ATTEMPT 1 of 2

I decided to start my experimentation for this task on Modal because of good experiences in the
past working with the service, and more importantly, a fantastic tutorial for fine tuning stable
diffusion on Modal for an icon generator here:

https://modal.com/blog/fine—tuning-stable-diffusion

I curated my dataset based on the provided XML files and deployed it here:

https://huggingface.co/datasets/Shivamkak/kanjiCaptions

Please let me know if you would like to see my data parsing code. I will not include it in the
appendix for this section as it was fairly straight forward, and I want to avoid making the
submission overly long. For my published dataset, I followed the data preparation format
requested by the Modal tutorial, ie a metadata.csv file in the following format:

file_name text

g kanji_e4e9c.png "Image of a Japanese kanji character
g in plain font. The character
means: Asia, rank next, come after,
-ous."

I kanji_05516.png "Image of a Japanese kanji character
i in plain font. The character
means: mute, dumb."

% kanji_@5a03.png “Image of a Japanese kanji character
% in plain font. The character
means: beautiful.”

https://modal.com/blog/fine-tuning-stable-diffusion
https://huggingface.co/datasets/Shivamkak/kanjiCaptions

ATTEMPT 1 of 2 - RESULTS
Initial generations were trained off of the base model runwayml/stable-diffusion-v1-5.

I curated a sample of prompts and resultant kanji character generation below, and I will compare
to these across my various attempts on this project. You may notice 3 of the 8 slots are Pikachu
... this is a feature of my testing, not a flaw. It was triply important that my model learned
adequate kanji character generation for “Pikachu”.

California Pizza

Legoland Pikachu Spongebob Trump

[Full Fine-Tuning of runwaymli/stable-diffusion-v1-5 on Kanji Dataset]
Then, I added the following style prompting:
style prefix = "A minimal, black and white kanji character. 5 STROKES MAXIMUM. Pure black

strokes on pure white background. Single character only, centered. Minimalist, thick brush
strokes in the style of Japanese calligraphy. "

negative_prompt = "color, colors, colorful, grey, grayscale, detailed, complex, ornate,
decorative, artistic, multiple characters, background, texture, 3d, shading, gradient”

And I re-deployed to generate the results below. This version is still live on my Modal Gradio

app here:

https://shivamkakl9--instantkanji-sandbox-fastapi-app.modal.run/

|—

Legoland

/ErTc 7L

%ﬁ%%

Pikachu
—

:*:/L\ 53
2an =
1\:%“”

=2 ot T
N

B4

]

=

AN

7

N

/)

\ =
=

Pikachu Spongebob

Trump

[Full Fine-Tuning of runwaymil/stable-diffusion-v1-5 on Kanji Dataset with Style Prompting]

Never in my life have [seen a Kanji character with that many strokes. Maybe I haven’t seen
enough Kanji. It suffices to say that these results are hardly satisfactory. And I might add, the
results without the style prompting were less accurate, but far more entertaining :)

https://shivamkak19--instantkanji-sandbox-fastapi-app.modal.run/

ATTEMPT 2 of 2

This time around I decided to try a LORA fine tuning on top of SD3.5 Large, available here:

https://huggingface.co/stabilityai/stable-diffusion-3.5-1arge

I also could have done a full fine-tuning, but my intuition was that LORA would be sufficient for
the purposes of kanji character generation. I am extremely curious how results would differ
between a full finetuning and LORA of SD3.5 Large, as I suspect results would be nearly
identical due to the large size of the Kanji Dataset I am using for LORA.

However, to save on my compute resources (I spent $450 on compute across all tasks in this
problem set :..)), I haven’t had the chance to try it out yet.

I followed the official SD3.5 fine-tuning tutorial from Stability.ai’s notion site:
https://stabilityai.notion.site/Stable-Diffusion-3-5-fine-tuning-guide
-11a61cdcd1968027al15bdbd7c40be8co#12461cdcd19680788a23c650dab26b93

I trained the model using SimpleTuner, and I trained using an A100 (40 GB SXM4) on
Lambda Labs. I set max training steps for 36000, following the equation below:

my Kanji Dataset has 6413 entries
I do not want any repeats

I found a batch size of 6 do be appropriate for my compute resource
30 epochs

Number of samples x Repeats
Batch size

Max training steps = () x Epochs

[Equation originally from SD3.5 fine-tuning tutorial linked directly above]

ATTEMPT 2 of 2 - RESULTS

I ran a total of two training runs on SD3.5 Large, the first with 1r=1.05e-3, and the second
with 1r=9.5e-4. In both cases I used a cosine learning rate scheduler. My hypothesis was that a
larger learning rate would yield more extreme cases of exploding gradients but would converge
to more satisfactory results. Since this fine-tuning task is for a very niche style compared to

https://huggingface.co/stabilityai/stable-diffusion-3.5-large
https://stabilityai.notion.site/Stable-Diffusion-3-5-fine-tuning-guide-11a61cdcd1968027a15bdbd7c40be8c6#12461cdcd19680788a23c650dab26b93
https://stabilityai.notion.site/Stable-Diffusion-3-5-fine-tuning-guide-11a61cdcd1968027a15bdbd7c40be8c6#12461cdcd19680788a23c650dab26b93
https://github.com/bghira/SimpleTuner

SD3.5 base generation, a more aggressive learning rate likely helps enforce style patterns from
the training data set. I couple this with a lora rank=768 and lora alpha=768 in both
experimental runs to allow for a stronger capacity to learn style patterns.

Below, I have curated exemplary checkpoints for both training runs, as well as a screenshot of
the validation image at all checkpoints (available for download in full resolution at given links).

validation prompt=“mountains” | B checkpoint image strip mountain.png

~Z I e B~ | o B 2\
T3 Th s T iz =N

==

[Base] [9400 Steps] [12000 Steps]

[Validation Images for LORA Fine-Tuning of SD3.5 Large on Kanji Dataset | LR = 1.05e-3]

validation prompt=“mountains” | W kanji lora2 checkpoint image strip mountain.png

ol =z — e B
HEE % (i -

[5400 Steps] [9600 Steps]

[Validation Images for LORA Fine-Tuning of SD3.5 Large on Kanji Dataset | LR = 9.5e-4]

Both learning rates experienced phases of exploding gradients in accordance with the cosine
learning rate scheduler.

https://drive.google.com/file/d/1LER7OwpeX7wEPFBkAgTsOYOOz5gP25Ub/view?usp=sharing
https://drive.google.com/file/d/13h3WnuAqIfhItrmZ9imlo-WKzc2fqrUP/view?usp=sharing

Exploding Gradients

. - - a e "
.‘ - ‘l I‘ l - l . ':
u e amnm I' I“l a L
S -. o ‘:H.l ", A "1;_;:'_ ot
N bl " Lol % .l l-‘I
l -D'I! - L] . : ' .l' .I.I.-bl Iﬁ - L)
LRI PO i
- »
1 L :' -. .' o k: .I -l. i
n ,: L] : "'-,.T ‘ ‘ A . " r- b l! L
. .‘. ”.'Ii.-$q‘-. - ‘-:c
- s ‘.‘ :. :: ::1.... " ; . .I B .. »
¥ - 'II -I .I . .‘ ! " N .-
. ' ' l- . I-l
- - . l . " - L] »
l. > - Y \ " = " L] "
[LR =1.05e-3; 7600 steps] [LR = 9.5e-4; 7800 stepsl

However, I found that the exploding gradients were more extreme in the case of 1r=9.5e-4.
Heuristically, it appeared that at times the phases of exploding gradients for 1r=9.5e-4 were
exploding off of the SD3.5 base rather than the LORA fine-tune. I did not see this trend repeat in
the case of 1r=1.05e-3. This may very well be due to the fact that the lower learning rate is
transferring styles from the kanji dataset less aggressively.

Exploding Gradients - Extreme Case

i X

[LR = 9.5e-4; 7800 steps]

After evaluating the validation benchmarks above for both training runs, I decided to proceed
with the 1r=1. 05e-3. Further, based off of visual inspection, I decided to use my safetensor
checkpoint at 14400 steps for freestyle generation in ComfyUI.

I published this checkpoint to Hugginface, and it is currently publicly available here:
https://huggingface.co/Shivamkak/sd35L kanji lora

In the default ComfyUI setup, text encoders are not loaded properly. Specifically, I needed to

pass the text encoders to a TripleClipLoader. I found the fix in this resolved GitHub issue:
https://github.com/comfyvanonymous/ComfyUIl/issues/5388

Additionally, I followed this guide to locate the correct text encoders:
https://comfyanonymous.github.io/ComfyUI examples/sd3/

CLIP Text Encode (Prompt)

[ComfyUl Workflow for Loading LORA Checkpoints on Top of SD3.5 Large]

Using the checkpoint at 14400 steps for the 1r=1.05e-3 run, I made the following generations:

prompt=“Kung Fu Panda Clown” | W kanji loral checkpoint image strip kungfu.png

. CREE 3

g

prompt="Middle-Eastern Uncle who feeds shawarma to local monkeys” |

B kanji_loral checkpoint image strip middle east uncle shawarma.png

== F e jH 2E s 4T 2T S0 p5 H Bl Ly 0 BRI 0 0 3
Tl = Vi = A ER

Below, I have included a final summary of results based on my important

Triple-Pikachu & Miscellaneous Creatures Benchmark

https://drive.google.com/file/d/1poIr5qp5Xg_k5rTOkz7LKgGcUbJHp_YS/view?usp=sharing
https://drive.google.com/file/d/1KZ8UQeDqD8q9Qmj1s69Tlx1yYWcNA7ye/view?usp=sharing
https://huggingface.co/Shivamkak/sd35L_kanji_lora
https://github.com/comfyanonymous/ComfyUI/issues/5388
https://comfyanonymous.github.io/ComfyUI_examples/sd3/

SD1.5 Full Fine-Tune

California Pizza

SD1.5 Full Fine-Tune
+ Style Prompting

Pikachu

SD3.5 LORA Fine-Tune
[LR =1.05e-4]

Nz -)- e . —+=
7-:\— Z)8\ H \ / W,
/| B2 | SR
California Pizza Pikachu Pikachu Kung Fu Panda Clown

/ / 1
“h | S| 2 |y
i Pl ey PRS0
Legoland Pikachu Spongebob

