Applying NEAT to Slime Volleyball | Builders Blog | December 2024

While exploring existing resources for NEAT implementation in JAX, I stumbled upon the
highly relevant tensorNEAT library:

https: ithub.com/EMI-Group/tensorneat

I decided to base my slimevolley implementation on tensorNEAT, and I attempt to create a
wrapper around tensorNEAT that can replace CMA as the solver in the

train slimevolley.py file. Since the tensorNEAT repo correctly evolves both the weights
and the topology, I also created a NeatPolicy Class that inherits from PolicyNetwork that is
compatible with my NeatWrapper Class.

My modified files are placed as follows within the EvoJAX library

evojax/algo/neat_wrapper.py

evojax/policy/tensorneat.py
examples/train_slimevolleyneat.py

I install both tensorNEAT and EvoJAX as dev dependencies in order to more conveniently use

tensorNEAT for the slimevolley task, as tensorNEAT is not currently available as a module on

PyPI. For more context on this setup, see README.md in the GitHub repository I am working
out of (currently private, let me know if you would like me to share access):

https://github.com/Shivamkakl9/evojax tensorneat

Before beginning, I had to fix a minor bug in the evojax/task/slimevolley.py file. In the
display () method of Particle and Agent Classes, I had to caste jax.numpy.float32 values to
floats by calling arr.item (). See docs and the sample code diff below.

https://jax.readthedocs.io/en/latest/ autosummary/jax.numpy.float32.ht
ml

display(self, canvas, ball x, ball y):

bx = float(ball x)
by = float(ball y)



https://github.com/EMI-Group/tensorneat
https://github.com/Shivamkak19/evojax_tensorneat
https://jax.readthedocs.io/en/latest/_autosummary/jax.numpy.float32.html
https://jax.readthedocs.io/en/latest/_autosummary/jax.numpy.float32.html

display(self, canvas, ball x, ball y):

print("DIAGNOSTIC DISPLAY: ball x:", ball x, "ball y:", ball y)
bx = float(ball x.item())
by = float(ball y.item())

RESULTS & ANALYSIS

To start, below I have attached the baseline training with CMA solver and MLP after 100 and
500 iterations:

[MLP Network + CMA Solver | 100 Iterations]
[[TEST] Iter=100, #tests=100, max=-3.0000, avg=-4.8000, min=-5.0000, std=-0.4243]




[MLP Network + CMA Solver | 500 Iterations]
[[TEST] Iter=500, #tests=100, max=2.0000, avg=0.2400, min=-1.0000, std=0.7499]

Next, I have included a visualization of the tensorNEAT implementation after 100 iterations of
training and after 500 iterations.

[NEATPolicy Network + NeatWrapper Solver | 100 Iterations]
[[TEST] Iter=100, #tests=100, max=-3.0000, avg--4.8600, min=-5.0000, std=0.4005]




[NEATPolicy Network + NeatWrapper Solver | 500 Iterations]
[[TEST] Iter=500, #tests=100, max=-3.0000, avg--4.8500, min=-5.0000, std=-0.4093]

Heuristically, one can notice that the tensorNEAT slimevolley agent has learned basic movement
in the initial phase of the match, but fails to replicate this movement past the initial game phase.
This may be due to an overly dense initialization of the network architecture. Specifically, there
was a clear tendency in my experiments for simpler network architectures over time with fewer
nodes and fewer connections. This is observed in the two plots attached on the following page.




66

65

64

63

62

61

60

59

900

800

700

600

500

400

20

test/network/num_connections

[tensorNEAT Network Connection Count over Iterations ]

test/network/num_nodes

[tensorNEAT Network Node Count over Iterations ]

Step

160

Step
D

160




This can be seen with a visual representation of the network architecture as well. Below, I have
sampled the network graphs from two iterations in the training process. (DPI was set low in
order to safely upload the images to wandb)

Iteration 60 Iteration 460

EE
A=
7 o
7 A -
7

7

~7

]

7

o)

=

o)

N7

o5l

N7

5

&

=
L

=)

N

[Evolution of tensorNEAT Network Architecture over Iterations]

My results converge to a best maximum test score of -3. However, if you look closely this is not
at all impressive because the lives lost by the internal agent were due to self-error on the part of
the internal agent.

test/score_max

-3.2
-3.4
-3.6

-3.8

Step

20 40 60 80 100 120 140

[tensorNEAT Network Max Score over Iterations ]




train/network/activation_identity

train/network/activation_relu
[

train/network/activation_tanh

train/network/activation_sigmoid

[tensorNEAT Train Network Activations ]

An interesting peculiarity of the network evolution is that a general downward trend in sigmoid
activations is accompanied with a generally upward trend in tanh activations. These trends are
far more pronounced in test networks (below) than in the train networks (above). This intuitively

makes sense for the slimevolley task, as its action space of 3 is more suitable for a tanh

activation.

test/network/activation_sigmoid

test/network/activation_tanh
e N\

[tensorNEAT Test Network Activations ]




BACKPROP NEAT

I first used the given source code to first download the dataset, zipped below:

https://drive.google.com/file/d/11L.I1sxgInCO0Lw83U1L-7Z9bEdbKIsfS1YhK/view
2usp=sharing

TensorNEAT already limits its activation functions to differentiable and mostly differentiable
functions (RELU, ABS). See their function definitions in

src/tensorneat/common/functions/act jnp.py

Specifically, the activation functions I am using include:

scaled_sigmoid
sigmoid
scaled_tanh
tanh

sin

relu

lelu

identity
inv
log
exp
abs

Once again, my implementation relies around tensorNEAT, except this time I no longer use the
provided DefaultGenome in the source code. I define a BackpropGenome Class that inherits
the DefaultGenome class but also supports loss computation to evolve weights. Specifically,
BackpropGenome modifies the default implementation to compute gradients and update the
weights via binary cross-entropy loss and an Adam optimizer. It retains Defaul tGenome’s
mutation and crossover for topology changes but replaces random weight updates with gradient
descent in minibatches. The forward pass uses ReLU, or optionally leaky RELU, activation and
includes safeguards for numerical stability (primarily clipping of gradients and prediction
values).

In each generation the algorithm first obtains the current population and trains on each individual
in the population, updating both nodes and connections. After training, each network is given a
fitness score, which is fed back into NEAT's process of speciation, mutation, and crossover. The



https://drive.google.com/file/d/1LIsxgInC0Lw83U1L-Z9bEdbKIsfS1YhK/view?usp=sharing
https://drive.google.com/file/d/1LIsxgInC0Lw83U1L-Z9bEdbKIsfS1YhK/view?usp=sharing

best performing network is tracked across generations with training being terminated upon
reaching max generations, hitting the target fitness, or encountering 5 consecutive generations
below a set threshold for fitness improvement (patience mechanism).

RESULTS

Below, I have attached several network visualizations of architectures that I personally found to
be notable or interesting as well as the generation number in which they occurred. Note, I only
ran the evolution process for a maximum of five generations.

13
Scaled_sigmpid

[Backprop NEAT Network Architecture | Generation 5]




N7
ek

[Backprop NEAT Network Architecture | Generation 4]




[Backprop NEAT Network Architecture | Generation 4]

KIR

[Backprop NEAT Network Architecture | Generation 5]




[Backprop NEAT Network Architecture | Generation 3]

ANALYSIS & NOTES

The most consistent pattern across generations appeared to be a preference for wide layers as
opposed to deep networks. This makes sense intuitively because binary classification types
typically do not require many hidden layers at all. Especially for a simple task such as circle
classification, even a single hidden layer will suffice if designing the neural net by hand. In this
sense, the neural networks generated by my tensorNEAT implementation are generally speaking
excessive and redundant. The choice in activation functions also varies greatly across
generations and different experimental runs on the same dataset. This may largely be due to an
early termination of the algorithm, as genomes may not have lived through enough generations
to have converged on a universally good classifier.

I enjoyed this task, yet regarding the first half it is frustrating to be submitting a NEAT agent that
does not actually defeat the internal agent. For this reason, I will be seeing the slime volley
gumdrop creature in my dreams (nightmares) ... until I have time to go back to this project and
defeat it.




