
‭Applying NEAT to Slime Volleyball | Builders Blog | December 2024‬

‭While exploring existing resources for NEAT implementation in JAX, I stumbled upon the‬
‭highly relevant tensorNEAT library:‬

‭https://github.com/EMI-Group/tensorneat‬

‭I decided to base my slimevolley implementation on tensorNEAT, and I attempt to create a‬
‭wrapper around tensorNEAT that can replace CMA as the solver in the‬
‭train_slimevolley.py‬‭file. Since the tensorNEAT repo‬‭correctly evolves both the weights‬
‭and the topology, I also created a‬‭NeatPolicy‬‭Class‬‭that inherits from‬‭PolicyNetwork‬‭that is‬
‭compatible with my‬‭NeatWrapper‬‭Class.‬

‭My modified files are placed as follows within the EvoJAX library‬

‭evojax/algo/neat_wrapper.py‬

‭evojax/policy/tensorneat.py‬

‭examples/train_slimevolleyneat.py‬

‭I install both tensorNEAT and EvoJAX as dev dependencies in order to more conveniently use‬
‭tensorNEAT for the slimevolley task, as tensorNEAT is not currently available as a module on‬
‭PyPI. For more context on this setup, see README.md in the GitHub repository I am working‬
‭out of (currently private, let me know if you would like me to share access):‬

‭https://github.com/Shivamkak19/evojax_tensorneat‬

‭Before beginning, I had to fix a minor bug in the‬‭evojax/task/slimevolley.py‬‭file. In the‬
‭display()‬‭method of Particle and Agent Classes, I‬‭had to caste jax.numpy.float32 values to‬
‭floats by calling‬‭arr.item()‬‭. See docs and the sample‬‭code diff below.‬

‭https://jax.readthedocs.io/en/latest/_autosummary/jax.numpy.float32.ht‬
‭ml‬

‭# BEFORE‬

‭def‬‭display‬‭(self, canvas, ball_x, ball_y):‬

‭bx = float(ball_x)‬

‭by = float(ball_y)‬

https://github.com/EMI-Group/tensorneat
https://github.com/Shivamkak19/evojax_tensorneat
https://jax.readthedocs.io/en/latest/_autosummary/jax.numpy.float32.html
https://jax.readthedocs.io/en/latest/_autosummary/jax.numpy.float32.html

‭# AFTER‬

‭def‬‭display‬‭(self, canvas, ball_x, ball_y):‬

‭print(‬‭"DIAGNOSTIC DISPLAY: ball_x:"‬‭, ball_x,‬‭"ball_y:"‬‭,‬‭ball_y)‬

‭bx = float(ball_x.item())‬

‭by = float(ball_y.item())‬

‭RESULTS & ANALYSIS‬

‭To start, below I have attached the baseline training with CMA solver and MLP after 100 and‬
‭500 iterations:‬

‭Next, I have included a visualization of the tensorNEAT implementation after 100 iterations of‬
‭training and after 500 iterations.‬

‭Heuristically, one can notice that the tensorNEAT slimevolley agent has learned basic movement‬
‭in the initial phase of the match, but fails to replicate this movement past the initial game phase.‬
‭This may be due to an overly dense initialization of the network architecture. Specifically, there‬
‭was a clear tendency in my experiments for simpler network architectures over time with fewer‬
‭nodes and fewer connections. This is observed in the two plots attached on the following page.‬

‭This can be seen with a visual representation of the network architecture as well. Below, I have‬
‭sampled the network graphs from two iterations in the training process. (DPI was set low in‬
‭order to safely upload the images to wandb)‬

‭My results converge to a best maximum test score of -3. However, if you look closely this is not‬
‭at all impressive because the lives lost by the internal agent were due to self-error on the part of‬
‭the internal agent.‬

‭An interesting peculiarity of the network evolution is that a general downward trend in sigmoid‬
‭activations is accompanied with a generally upward trend in tanh activations. These trends are‬
‭far more pronounced in test networks (below) than in the train networks (above). This intuitively‬
‭makes sense for the slimevolley task, as its action space of 3 is more suitable for a tanh‬
‭activation.‬

‭BACKPROP NEAT‬

‭I first used the given source code to first download the dataset, zipped below:‬

‭https://drive.google.com/file/d/1LIsxgInC0Lw83U1L-Z9bEdbKIsfS1YhK/view‬
‭?usp=sharing‬

‭TensorNEAT already limits its activation functions to differentiable and mostly differentiable‬
‭functions (RELU, ABS). See their function definitions in‬

‭src/tensorneat/common/functions/act_jnp.py‬

‭Specifically, the activation functions I am using include:‬

‭scaled_sigmoid‬

‭sigmoid‬

‭scaled_tanh‬

‭tanh‬

‭sin‬

‭relu‬

‭lelu‬

‭identity‬

‭inv‬

‭log‬

‭exp‬

‭abs‬

‭Once again, my implementation relies around tensorNEAT, except this time I no longer use the‬
‭provided‬‭DefaultGenome‬‭in the source code. I define‬‭a‬‭BackpropGenome‬‭Class that inherits‬
‭the‬‭DefaultGenome‬‭class but also supports loss computation‬‭to evolve weights. Specifically,‬
‭BackpropGenome‬‭modifies the default implementation‬‭to compute gradients and update the‬
‭weights via binary cross-entropy loss and an Adam optimizer. It retains‬‭DefaultGenome‬‭’s‬
‭mutation and crossover for topology changes but replaces random weight updates with gradient‬
‭descent in minibatches. The forward pass uses‬‭ReLU‬‭,‬‭or optionally‬‭leaky RELU‬‭, activation and‬
‭includes safeguards for numerical stability (primarily clipping of gradients and prediction‬
‭values).‬

‭In each generation the algorithm first obtains the current population and trains on each individual‬
‭in the population, updating both nodes and connections. After training, each network is given a‬
‭fitness score, which is fed back into NEAT's process of speciation, mutation, and crossover. The‬

https://drive.google.com/file/d/1LIsxgInC0Lw83U1L-Z9bEdbKIsfS1YhK/view?usp=sharing
https://drive.google.com/file/d/1LIsxgInC0Lw83U1L-Z9bEdbKIsfS1YhK/view?usp=sharing

‭best performing network is tracked across generations with training being terminated upon‬
‭reaching max generations, hitting the target fitness, or encountering 5 consecutive generations‬
‭below a set threshold for fitness improvement (patience mechanism).‬

‭RESULTS‬

‭Below, I have attached several network visualizations of architectures that I personally found to‬
‭be notable or interesting as well as the generation number in which they occurred. Note, I only‬
‭ran the evolution process for a maximum of five generations.‬

‭ANALYSIS & NOTES‬

‭The most consistent pattern across generations appeared to be a preference for wide layers as‬
‭opposed to deep networks. This makes sense intuitively because binary classification types‬
‭typically do not require many hidden layers at all. Especially for a simple task such as circle‬
‭classification, even a single hidden layer will suffice if designing the neural net by hand. In this‬
‭sense, the neural networks generated by my tensorNEAT implementation are generally speaking‬
‭excessive and redundant. The choice in activation functions also varies greatly across‬
‭generations and different experimental runs on the same dataset. This may largely be due to an‬
‭early termination of the algorithm, as genomes may not have lived through enough generations‬
‭to have converged on a universally good classifier.‬

‭I enjoyed this task, yet regarding the first half it is frustrating to be submitting a NEAT agent that‬
‭does not actually defeat the internal agent. For this reason, I will be seeing the slime volley‬
‭gumdrop creature in my dreams (nightmares) … until I have time to go back to this project and‬
‭defeat it.‬

