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Abstract

This survey examines the theoretical foundations and advances in temporal network theory,
with a focus on the 2015 paper by Petter Holme on the topic. Temporal networks represent
a crucial extension of traditional static network theory by incorporating the time dimension of
interactions between nodes, enabling more accurate modeling of real-world dynamic systems.
‘While static networks have provided valuable insights into complex systems, many applications
require understanding how network structures evolve and interact over time. This paper ex-
plores the key concepts, representations, and analytical tools developed for temporal networks,
including contact sequences, reachability graphs, and various randomization techniques. We
examine how temporal networks have been applied across diverse domains, from epidemiol-
ogy and human communication patterns to biological systems and economic networks. The
analysis reveals that temporal networks, despite being more complex to analyze than static
networks, offer essential insights into dynamic processes that static representations cannot cap-
ture. This review concludes by discussing open challenges and future research directions in
temporal network theory, particularly in developing more standardized analytical frameworks

and visualization techniques.

1 Introduction

Networks provide a powerful framework for analyzing complex systems by reducing them to their
essential interconnected components. Traditional network theory has focused primarily on static
representations where connections between nodes remain fixed. However, real-world networks are
rarely static - relationships form and dissolve, interactions occur at specific times, and the very
structure of networks evolves continuously. This fundamental temporal nature of networks has
driven the development of temporal network theory. Temporal networks extend traditional network
analysis by incorporating the crucial dimension of time. Rather than simply representing whether
two nodes are connected, temporal networks capture when these connections occur, for how long, and

in what sequence. This additional temporal information enables more accurate modeling of dynamic
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Figure 1: The visualization challenge in temporal networks. (a) Static networks can be clearly
visualized and intuitively understood through node-link diagrams. (b) Temporal networks pose a
greater challenge for visualization since they must represent both network structure and temporal
evolution simultaneously.

processes like disease spread, information diffusion, and social interaction patterns. One of the key
challenges in temporal network analysis lies in developing appropriate tools and methodologies.
While static networks benefit from decades of established analytical techniques, temporal networks
require new approaches that can handle both structural and temporal dimensions. The field has had
to develop novel concepts like temporal paths, reachability, and various forms of centrality measures
that account for the time-ordered nature of interactions. This survey examines the theoretical
foundations of temporal networks as presented in the comprehensive work by Holme, exploring
how the incorporation of time transforms our understanding of network dynamics. We analyze key
representations of temporal networks, from basic contact sequences to more sophisticated frameworks
like time-node graphs and adjacency tensors. The survey also investigates the various applications
of temporal networks across diverse domains, including epidemiology, human communication, and

biological systems.
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Figure 2: Comparison of different temporal network representations

2 Representing Temporal Networks

The representation of temporal networks presents unique challenges that go beyond those of static
networks. While static networks benefit from intuitive visualizations and well-established mathemat-
ical frameworks, temporal networks require more sophisticated approaches to capture both structural
and temporal dimensions. This section examines the key representations and their relative strengths

and limitations.

2.1 Fundamental Representation Challenges

A critical challenge in temporal network analysis is the trade-off between information preservation
and analytical tractability. Unlike static networks where a simple adjacency matrix can capture
the complete network structure, temporal networks require additional dimensions to represent time-

varying interactions. This fundamentally affects both visualization and analysis approaches.

2.2 Lossless Representations

Several frameworks have emerged for representing temporal networks without loss of information.
The most basic approach is the contact sequence, which records each interaction as a triple containing
the two interacting nodes and the time of interaction. While computationally convenient, contact
sequences lack intuitive visual representation and make it difficult to reason about network structure.

Graph sequences offer an alternative by discretizing time into steps and representing the net-
work as a series of static snapshots. This approach proves particularly valuable when the temporal
resolution is relatively low compared to the dynamics of interest. However, it becomes problematic
when interactions are instantaneous or when the time resolution is high, potentially missing crucial

temporal correlations between steps.
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The adjacency tensor representation extends the familiar adjacency matrix to include a temporal
dimension. While mathematically elegant, this approach often proves impractical for sparse temporal
networks due to memory requirements and computational complexity. Additionally, the directed

nature of time introduces asymmetries that complicate standard tensor algebraic techniques.

2.3 Lossy Representations and Their Applications

Given the complexity of complete temporal information, lossy representations often provide practical
advantages. Time-window graphs aggregate contacts within specific intervals, trading temporal
resolution for analytical simplicity. This approach proves particularly useful for studying phenomena
with natural time scales, such as daily or weekly patterns in human contact networks.

Reachability graphs capture the potential for information or influence flow by connecting nodes
that can be reached through time-respecting paths. While discarding detailed temporal information,
these representations effectively capture connectivity patterns relevant to spreading processes.

An emerging trend is the use of higher-order representations that preserve selected temporal
correlations while reducing complexity. Memory networks, for instance, encode probabilistic de-
pendencies between consecutive events, enabling more accurate modeling of walk processes while

maintaining computational feasibility.

2.4 Analytical Implications

The choice of representation fundamentally shapes the types of questions that can be effectively
addressed. Lossless representations enable detailed analysis of temporal patterns but often require
specialized algorithms and significant computational resources. Lossy representations facilitate the
application of existing network analysis tools but may miss crucial temporal features.

Modern approaches increasingly combine multiple representations, using lossy methods for ini-
tial exploration and lossless representations for detailed analysis of specific features. This hybrid
approach reflects the growing recognition that temporal network analysis requires a toolkit of com-

plementary methods rather than a single universal framework.

3 Measuring Temporal Network Structure

The measurement and characterization of temporal network structure presents unique challenges
that extend beyond traditional static network metrics. This section examines the key approaches
to quantifying both structural and temporal aspects of these networks, with particular attention to

how temporal dynamics influence measurement methodologies.

3.1 Beyond Static Metrics

While static network analysis benefits from well-established metrics like degree distributions and clus-
tering coeflicients, temporal networks require fundamentally different approaches. The introduction

of time as a dimension means that even basic concepts like connectivity must be reconsidered. Unlike
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static networks where paths are time-independent, temporal networks must consider the sequence

and timing of interactions to determine viable paths for information flow or influence spread.

3.2 Temporal Distance and Reachability

A fundamental concept in temporal networks is the notion of temporal distance. Unlike static
networks where distance is measured in hops, temporal distance must account for both topological

and temporal separation. This leads to several possible definitions:

e Latency: The time difference between a starting time t and the earliest possible arrival at a

destination through time-respecting paths

e Temporal Distance: The minimum time required to reach from one node to another, con-

sidering only paths that respect temporal ordering

e Reachability Time: The average shortest time to traverse between nodes when temporal

paths exist

These measures provide crucial insights into the network’s capacity for information spreading

and influence propagation, though each captures different aspects of temporal connectivity.

3.3 Burstiness and Temporal Patterns

One of the most distinctive features of temporal networks is the presence of bursty behavior - the
tendency for events to cluster in time rather than follow Poisson processes. This phenomenon,
particularly evident in human communication and interaction networks, has profound implications

for dynamic processes.

3.4 Centrality and Influence

The concept of node centrality must be fundamentally reconsidered in temporal networks. Tra-
ditional measures like degree or betweenness centrality can be misleading when applied to time-
aggregated networks, as they ignore the crucial role of timing in influence propagation. Several

temporal centrality measures have emerged:
e Temporal Betweenness: Measuring a node’s importance in time-respecting paths
e Temporal Coverage: Quantifying a node’s role in rapid information dissemination
e Temporal Closeness: Capturing a node’s average temporal proximity to other nodes

These measures provide more nuanced insights into node importance, particularly for processes

where timing is crucial.
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4 Manipulation and Generation of Temporal Networks

The analysis of temporal networks often requires sophisticated approaches for network manipulation,
comparison, and synthetic generation. This section explores the key methodological frameworks for
these tasks, with particular attention to randomization techniques, reference models, and generative

approaches.

4.1 Randomization Techniques

Randomization provides a powerful tool for understanding the significance of temporal network struc-
tures. Unlike static networks, where randomization typically focuses on topology alone, temporal

network randomization can target multiple aspects of the network’s structure.

4.1.1 Time Shuffling

The most basic approach maintains network topology while randomizing interaction times. This
technique proves particularly valuable for assessing the importance of temporal correlations and
evaluating the impact of timing on dynamic processes.

The randomization process can be formalized as follows:

Tij(t) = Tiz(w(t)) (1)

where 7;;(t) represents a contact between nodes i and j at time t, and 7 (¢) is a random permutation

of time stamps.

4.1.2 Link Shuffling
More aggressive randomization can target both temporal and topological features:

1

P(l” — li/j') - m

e [;; represents the original link between nodes i and j

e [;/js is a potential new link between different nodes 7’ and j’

e P(l;j = ly;) is the probability of rewiring the original link to a new link configuration
e [ is the total number of links in the network

In this probabilistic link rewiring approach, several key characteristics emerge. Each link in the
network has an equal and uniformly random chance of being reconfigured, which means no particular
link is more likely to be rewired than any other. The total number of links in the network remains

constant throughout this process, preserving the overall network density. The probability of rewiring,

calculated as ﬁ, ensures that every possible link reconfiguration is equally likely, creating a truly

random redistribution of network connections.
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Figure 3: Tllustration of the shuffled-time-stamps randomization scheme. Panel (a) shows the original
network from a contact-list representation. Panel (b) demonstrates how randomization operates on
these contacts. Panels (¢) and (d) show the effect of this randomization on susceptible-infectious
spreading with 100% infection rate, comparing outbreak dynamics between original and randomized
networks. This visualization reveals how temporal correlations can significantly impact spreading
processes.

4.2 Reference Models

Reference models provide crucial baselines for temporal network analysis. Several key approaches

have emerged:
e Configuration Models: Preserving degree sequences while randomizing other properties
e Activity-Driven Models: Maintaining node activity levels while randomizing interactions

Each model class offers different insights into the significance of observed network features.

4.3 Generative Models

The development of generative models for temporal networks addresses key objectives, from creat-
ing synthetic datasets for testing to understanding the mechanisms underlying real-world network

formation. See the diagram from the Holme paper in Figure 4 for examples of generative models.
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Figure 4: Hlustration of a simple generative model for temporal networks. The process begins with
(a) generating a static network (technically a multigraph) through configuration model, followed by
(b) matching degrees in random pairs. (c) Shows the generation of active intervals for links, and (d)
demonstrates the creation of a time series of interevent times that is then (e) matched to the active
intervals. This model captures both structural and temporal aspects of real temporal networks.

4.4 Temporal Network Prediction

The prediction of future temporal network states presents unique challenges that extend beyond

traditional link prediction:
e Short-term Prediction: Forecasting immediate future contacts based on recent history
e Pattern Prediction: Identifying and extrapolating recurring temporal motifs

e Structural Evolution: Predicting longer-term changes in network organization

4.5 Temporal Network Comparison

The comparison of temporal networks requires metrics that capture both structural and temporal

similarities:
e Flow-Based Similarity: Comparing dynamic process outcomes
e Pattern-Based Metrics: Evaluating similarities in temporal motifs

These comparison frameworks enable systematic analysis across different temporal network datasets.
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4.6 Computational Considerations

The manipulation of temporal networks often faces significant computational challenges. Key con-

siderations include:
e Storage requirements for full temporal information: O(NT') for N nodes and T time steps
e Algorithmic complexity of temporal path calculations: Often O(N?T) or worse
e Scalability of randomization procedures
e Efficiency of generative model implementations

These practical considerations necessitate careful algorithm design and appropriate data struc-

tures.

5 Dynamic Processes on Temporal Networks

The study of dynamic processes on temporal networks represents a critical frontier in understand-
ing complex systems, offering a more nuanced approach to modeling interactions than traditional
static network analysis. Unlike static representations, temporal networks capture the intricate tem-
poral dependencies that fundamentally shape how processes spread and interact across networked
systems. Random walks serve as a foundational process for exploring temporal network dynamics.
These walks differ significantly from static network traversals by strictly adhering to time-ordered
contacts, which dramatically alters network exploration and information diffusion mechanisms. Re-
searchers have discovered that temporal correlations and network burstiness can substantially slow
down or accelerate network traversal, challenging previous assumptions about network connectiv-
ity. Epidemic spreading models represent perhaps the most extensively studied dynamic process in
temporal networks. These models require fundamental reformulations when translated from static
to temporal frameworks, transforming single-parameter models into more complex multi-parameter
systems. Counterintuitive findings have emerged, such as strong network links potentially impeding
disease spread in certain Susceptible-Infectious-Recovered (SIR) models, while simultaneously facili-
tating transmission in other contexts. Information and opinion spreading processes reveal even more
intricate dynamics, distinguishing themselves from simple contagion models. These processes often
require multiple exposures for adoption and demonstrate sensitivity to temporal clustering. Unlike
disease spreading, information diffusion can be accelerated by temporal network structures that
would typically inhibit biological transmission, highlighting the unique characteristics of complex
social and communication networks. Beyond primary spreading processes, researchers have begun
exploring additional dynamic phenomena. Percolation theory applied to temporal networks provides
insights into network robustness and connectivity, while synchronization studies investigate collec-
tive behavior across networked systems. The field faces significant challenges in integrating multiple
temporal scales, developing more sophisticated spreading models, and creating computational meth-
ods capable of handling increasingly complex network representations. As temporal network research

continues to evolve, it promises to provide unique insights into how timing and network structure



214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

jointly influence complex systemic behaviors across domains ranging from epidemiology to social

communication to technological systems.

6 CONCLUSION/REFLECTION

Temporal networks are a fascinating paradigm that are yet to be analyzed as rigorougly as their
static counterparts. Holme outlines a thorough comparsion of static and temporal networks in his
initial survey, and it serves to provide where and how temporal networks may be used practically in
the future. I personally found it very fulfilling to learn more about temporal networks through this
project, as it is a topic that I had very little prior knowledge on. Moreover, one of my interests is in
genetic algorithms, particularly along the line of Kenneth Stanley’s original work for Neuroevolution
of Augmenting Topologies (NEAT). A deeper understanding of temporal networks contributes to a
deeper understanding of evolving network topologies for genetic algorithms, so I was very satisfied
to dive into this topic. Further study may take me to explore how temporal networks can be used
effectively for genetic algorithms, particularly in the presence of GPU acceleration via frameworks
such as EvoJAX.
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