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Abstract6

This survey examines the theoretical foundations and advances in temporal network theory,7

with a focus on the 2015 paper by Petter Holme on the topic. Temporal networks represent8

a crucial extension of traditional static network theory by incorporating the time dimension of9

interactions between nodes, enabling more accurate modeling of real-world dynamic systems.10

While static networks have provided valuable insights into complex systems, many applications11

require understanding how network structures evolve and interact over time. This paper ex-12

plores the key concepts, representations, and analytical tools developed for temporal networks,13

including contact sequences, reachability graphs, and various randomization techniques. We14

examine how temporal networks have been applied across diverse domains, from epidemiol-15

ogy and human communication patterns to biological systems and economic networks. The16

analysis reveals that temporal networks, despite being more complex to analyze than static17

networks, offer essential insights into dynamic processes that static representations cannot cap-18

ture. This review concludes by discussing open challenges and future research directions in19

temporal network theory, particularly in developing more standardized analytical frameworks20

and visualization techniques.21

1 Introduction22

Networks provide a powerful framework for analyzing complex systems by reducing them to their23

essential interconnected components. Traditional network theory has focused primarily on static24

representations where connections between nodes remain fixed. However, real-world networks are25

rarely static - relationships form and dissolve, interactions occur at specific times, and the very26

structure of networks evolves continuously. This fundamental temporal nature of networks has27

driven the development of temporal network theory. Temporal networks extend traditional network28

analysis by incorporating the crucial dimension of time. Rather than simply representing whether29

two nodes are connected, temporal networks capture when these connections occur, for how long, and30

in what sequence. This additional temporal information enables more accurate modeling of dynamic31
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Figure 1: The visualization challenge in temporal networks. (a) Static networks can be clearly
visualized and intuitively understood through node-link diagrams. (b) Temporal networks pose a
greater challenge for visualization since they must represent both network structure and temporal
evolution simultaneously.

processes like disease spread, information diffusion, and social interaction patterns. One of the key32

challenges in temporal network analysis lies in developing appropriate tools and methodologies.33

While static networks benefit from decades of established analytical techniques, temporal networks34

require new approaches that can handle both structural and temporal dimensions. The field has had35

to develop novel concepts like temporal paths, reachability, and various forms of centrality measures36

that account for the time-ordered nature of interactions. This survey examines the theoretical37

foundations of temporal networks as presented in the comprehensive work by Holme, exploring38

how the incorporation of time transforms our understanding of network dynamics. We analyze key39

representations of temporal networks, from basic contact sequences to more sophisticated frameworks40

like time-node graphs and adjacency tensors. The survey also investigates the various applications41

of temporal networks across diverse domains, including epidemiology, human communication, and42

biological systems.43
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Figure 2: Comparison of different temporal network representations

2 Representing Temporal Networks44

The representation of temporal networks presents unique challenges that go beyond those of static45

networks. While static networks benefit from intuitive visualizations and well-established mathemat-46

ical frameworks, temporal networks require more sophisticated approaches to capture both structural47

and temporal dimensions. This section examines the key representations and their relative strengths48

and limitations.49

2.1 Fundamental Representation Challenges50

A critical challenge in temporal network analysis is the trade-off between information preservation51

and analytical tractability. Unlike static networks where a simple adjacency matrix can capture52

the complete network structure, temporal networks require additional dimensions to represent time-53

varying interactions. This fundamentally affects both visualization and analysis approaches.54

2.2 Lossless Representations55

Several frameworks have emerged for representing temporal networks without loss of information.56

The most basic approach is the contact sequence, which records each interaction as a triple containing57

the two interacting nodes and the time of interaction. While computationally convenient, contact58

sequences lack intuitive visual representation and make it difficult to reason about network structure.59

Graph sequences offer an alternative by discretizing time into steps and representing the net-60

work as a series of static snapshots. This approach proves particularly valuable when the temporal61

resolution is relatively low compared to the dynamics of interest. However, it becomes problematic62

when interactions are instantaneous or when the time resolution is high, potentially missing crucial63

temporal correlations between steps.64
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The adjacency tensor representation extends the familiar adjacency matrix to include a temporal65

dimension. While mathematically elegant, this approach often proves impractical for sparse temporal66

networks due to memory requirements and computational complexity. Additionally, the directed67

nature of time introduces asymmetries that complicate standard tensor algebraic techniques.68

2.3 Lossy Representations and Their Applications69

Given the complexity of complete temporal information, lossy representations often provide practical70

advantages. Time-window graphs aggregate contacts within specific intervals, trading temporal71

resolution for analytical simplicity. This approach proves particularly useful for studying phenomena72

with natural time scales, such as daily or weekly patterns in human contact networks.73

Reachability graphs capture the potential for information or influence flow by connecting nodes74

that can be reached through time-respecting paths. While discarding detailed temporal information,75

these representations effectively capture connectivity patterns relevant to spreading processes.76

An emerging trend is the use of higher-order representations that preserve selected temporal77

correlations while reducing complexity. Memory networks, for instance, encode probabilistic de-78

pendencies between consecutive events, enabling more accurate modeling of walk processes while79

maintaining computational feasibility.80

2.4 Analytical Implications81

The choice of representation fundamentally shapes the types of questions that can be effectively82

addressed. Lossless representations enable detailed analysis of temporal patterns but often require83

specialized algorithms and significant computational resources. Lossy representations facilitate the84

application of existing network analysis tools but may miss crucial temporal features.85

Modern approaches increasingly combine multiple representations, using lossy methods for ini-86

tial exploration and lossless representations for detailed analysis of specific features. This hybrid87

approach reflects the growing recognition that temporal network analysis requires a toolkit of com-88

plementary methods rather than a single universal framework.89

3 Measuring Temporal Network Structure90

The measurement and characterization of temporal network structure presents unique challenges91

that extend beyond traditional static network metrics. This section examines the key approaches92

to quantifying both structural and temporal aspects of these networks, with particular attention to93

how temporal dynamics influence measurement methodologies.94

3.1 Beyond Static Metrics95

While static network analysis benefits from well-established metrics like degree distributions and clus-96

tering coefficients, temporal networks require fundamentally different approaches. The introduction97

of time as a dimension means that even basic concepts like connectivity must be reconsidered. Unlike98
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static networks where paths are time-independent, temporal networks must consider the sequence99

and timing of interactions to determine viable paths for information flow or influence spread.100

3.2 Temporal Distance and Reachability101

A fundamental concept in temporal networks is the notion of temporal distance. Unlike static102

networks where distance is measured in hops, temporal distance must account for both topological103

and temporal separation. This leads to several possible definitions:104

• Latency: The time difference between a starting time t and the earliest possible arrival at a105

destination through time-respecting paths106

• Temporal Distance: The minimum time required to reach from one node to another, con-107

sidering only paths that respect temporal ordering108

• Reachability Time: The average shortest time to traverse between nodes when temporal109

paths exist110

These measures provide crucial insights into the network’s capacity for information spreading111

and influence propagation, though each captures different aspects of temporal connectivity.112

3.3 Burstiness and Temporal Patterns113

One of the most distinctive features of temporal networks is the presence of bursty behavior - the114

tendency for events to cluster in time rather than follow Poisson processes. This phenomenon,115

particularly evident in human communication and interaction networks, has profound implications116

for dynamic processes.117

3.4 Centrality and Influence118

The concept of node centrality must be fundamentally reconsidered in temporal networks. Tra-119

ditional measures like degree or betweenness centrality can be misleading when applied to time-120

aggregated networks, as they ignore the crucial role of timing in influence propagation. Several121

temporal centrality measures have emerged:122

• Temporal Betweenness: Measuring a node’s importance in time-respecting paths123

• Temporal Coverage: Quantifying a node’s role in rapid information dissemination124

• Temporal Closeness: Capturing a node’s average temporal proximity to other nodes125

These measures provide more nuanced insights into node importance, particularly for processes126

where timing is crucial.127
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4 Manipulation and Generation of Temporal Networks128

The analysis of temporal networks often requires sophisticated approaches for network manipulation,129

comparison, and synthetic generation. This section explores the key methodological frameworks for130

these tasks, with particular attention to randomization techniques, reference models, and generative131

approaches.132

4.1 Randomization Techniques133

Randomization provides a powerful tool for understanding the significance of temporal network struc-134

tures. Unlike static networks, where randomization typically focuses on topology alone, temporal135

network randomization can target multiple aspects of the network’s structure.136

4.1.1 Time Shuffling137

The most basic approach maintains network topology while randomizing interaction times. This138

technique proves particularly valuable for assessing the importance of temporal correlations and139

evaluating the impact of timing on dynamic processes.140

The randomization process can be formalized as follows:141

τij(t) → τij(π(t)) (1)

where τij(t) represents a contact between nodes i and j at time t, and π(t) is a random permutation142

of time stamps.143

4.1.2 Link Shuffling144

More aggressive randomization can target both temporal and topological features:145

P (lij → li′j′) =
1

L(L− 1)
(2)

• lij represents the original link between nodes i and j146

• li′j′ is a potential new link between different nodes i′ and j′147

• P (lij → li′j′) is the probability of rewiring the original link to a new link configuration148

• L is the total number of links in the network149

In this probabilistic link rewiring approach, several key characteristics emerge. Each link in the150

network has an equal and uniformly random chance of being reconfigured, which means no particular151

link is more likely to be rewired than any other. The total number of links in the network remains152

constant throughout this process, preserving the overall network density. The probability of rewiring,153

calculated as 1
L(L−1) , ensures that every possible link reconfiguration is equally likely, creating a truly154

random redistribution of network connections.155
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Figure 3: Illustration of the shuffled-time-stamps randomization scheme. Panel (a) shows the original
network from a contact-list representation. Panel (b) demonstrates how randomization operates on
these contacts. Panels (c) and (d) show the effect of this randomization on susceptible-infectious
spreading with 100% infection rate, comparing outbreak dynamics between original and randomized
networks. This visualization reveals how temporal correlations can significantly impact spreading
processes.

4.2 Reference Models156

Reference models provide crucial baselines for temporal network analysis. Several key approaches157

have emerged:158

• Configuration Models: Preserving degree sequences while randomizing other properties159

• Activity-Driven Models: Maintaining node activity levels while randomizing interactions160

Each model class offers different insights into the significance of observed network features.161

4.3 Generative Models162

The development of generative models for temporal networks addresses key objectives, from creat-163

ing synthetic datasets for testing to understanding the mechanisms underlying real-world network164

formation. See the diagram from the Holme paper in Figure 4 for examples of generative models.165
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Figure 4: Illustration of a simple generative model for temporal networks. The process begins with
(a) generating a static network (technically a multigraph) through configuration model, followed by
(b) matching degrees in random pairs. (c) Shows the generation of active intervals for links, and (d)
demonstrates the creation of a time series of interevent times that is then (e) matched to the active
intervals. This model captures both structural and temporal aspects of real temporal networks.

4.4 Temporal Network Prediction166

The prediction of future temporal network states presents unique challenges that extend beyond167

traditional link prediction:168

• Short-term Prediction: Forecasting immediate future contacts based on recent history169

• Pattern Prediction: Identifying and extrapolating recurring temporal motifs170

• Structural Evolution: Predicting longer-term changes in network organization171

4.5 Temporal Network Comparison172

The comparison of temporal networks requires metrics that capture both structural and temporal173

similarities:174

• Flow-Based Similarity: Comparing dynamic process outcomes175

• Pattern-Based Metrics: Evaluating similarities in temporal motifs176

These comparison frameworks enable systematic analysis across different temporal network datasets.177
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4.6 Computational Considerations178

The manipulation of temporal networks often faces significant computational challenges. Key con-179

siderations include:180

• Storage requirements for full temporal information: O(NT ) for N nodes and T time steps181

• Algorithmic complexity of temporal path calculations: Often O(N2T ) or worse182

• Scalability of randomization procedures183

• Efficiency of generative model implementations184

These practical considerations necessitate careful algorithm design and appropriate data struc-185

tures.186

5 Dynamic Processes on Temporal Networks187

The study of dynamic processes on temporal networks represents a critical frontier in understand-188

ing complex systems, offering a more nuanced approach to modeling interactions than traditional189

static network analysis. Unlike static representations, temporal networks capture the intricate tem-190

poral dependencies that fundamentally shape how processes spread and interact across networked191

systems. Random walks serve as a foundational process for exploring temporal network dynamics.192

These walks differ significantly from static network traversals by strictly adhering to time-ordered193

contacts, which dramatically alters network exploration and information diffusion mechanisms. Re-194

searchers have discovered that temporal correlations and network burstiness can substantially slow195

down or accelerate network traversal, challenging previous assumptions about network connectiv-196

ity. Epidemic spreading models represent perhaps the most extensively studied dynamic process in197

temporal networks. These models require fundamental reformulations when translated from static198

to temporal frameworks, transforming single-parameter models into more complex multi-parameter199

systems. Counterintuitive findings have emerged, such as strong network links potentially impeding200

disease spread in certain Susceptible-Infectious-Recovered (SIR) models, while simultaneously facili-201

tating transmission in other contexts. Information and opinion spreading processes reveal even more202

intricate dynamics, distinguishing themselves from simple contagion models. These processes often203

require multiple exposures for adoption and demonstrate sensitivity to temporal clustering. Unlike204

disease spreading, information diffusion can be accelerated by temporal network structures that205

would typically inhibit biological transmission, highlighting the unique characteristics of complex206

social and communication networks. Beyond primary spreading processes, researchers have begun207

exploring additional dynamic phenomena. Percolation theory applied to temporal networks provides208

insights into network robustness and connectivity, while synchronization studies investigate collec-209

tive behavior across networked systems. The field faces significant challenges in integrating multiple210

temporal scales, developing more sophisticated spreading models, and creating computational meth-211

ods capable of handling increasingly complex network representations. As temporal network research212

continues to evolve, it promises to provide unique insights into how timing and network structure213
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jointly influence complex systemic behaviors across domains ranging from epidemiology to social214

communication to technological systems.215

6 CONCLUSION/REFLECTION216

Temporal networks are a fascinating paradigm that are yet to be analyzed as rigorougly as their217

static counterparts. Holme outlines a thorough comparsion of static and temporal networks in his218

initial survey, and it serves to provide where and how temporal networks may be used practically in219

the future. I personally found it very fulfilling to learn more about temporal networks through this220

project, as it is a topic that I had very little prior knowledge on. Moreover, one of my interests is in221

genetic algorithms, particularly along the line of Kenneth Stanley’s original work for Neuroevolution222

of Augmenting Topologies (NEAT). A deeper understanding of temporal networks contributes to a223

deeper understanding of evolving network topologies for genetic algorithms, so I was very satisfied224

to dive into this topic. Further study may take me to explore how temporal networks can be used225

effectively for genetic algorithms, particularly in the presence of GPU acceleration via frameworks226

such as EvoJAX.227
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