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Iypes of lemporal Networks



It is natural to introduce and discuss temporal networks through the lens of static networks
Temporal networks are based on a structure that links entities pairwise, and also encodes the time
of interaction
computer science pioneered temporal network theory - building off of ideas of Leslie Lamport
Human Proximity Networks

o  Highest resolution data comes from RFID or infrared sensors

o one study used people logged onto campus WiFi network, contact is recorded if 2 people are

connected to same WIFI router at same time

Patient Referral Networks

o how many patients are transferred between wards of a hospital system

o studying 295,108 Swedish patients over two years
Sexual Contact Networks

o sexual contacts are self-reported by Brazilian sex buyers at a web community.



https://vimeo.com/3 1490438
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Animal Proximity Networks
Human Communication Networks
o These register who called whom, or who sent text messages to whom
o Boundary problem
Collaboration Networks
Citation Networks
o all out-links of a node (paper) happen simultaneously (when the paper is published)
Brain Networks
o temporal correlations of the oxygen levels as measured by fMRI scanning.
Distributed Computing
o Advent of mobile computing creates an adversarial setting where many devices must be able
to connect to a network in a decentralized manner
Ecological networks

o Food webs - antagonistic interactions between species



[ypes of lemporal INetworis.




Ve believe the readers of this. paper:are
niore imaginative that e auinoy; so we will
not try much harder:



Networls Representations






Contact Sequences
o lists of contacts, i.e. the two node involved and the time of the interaction
o good for computation, bad for visualization
Graph sequences or multilayer networks
o for any discrete time step, one can understand and characterize the network using static
network theory
Time-node graphs
Time Series of contacts on a static graph
Timelines of contacts
Adjacency tensors
o  Just like a static network can be represented as a binary matrix, an adjacency matrix, a
temporal network can be represented as a binary tensor
Since the dynamic system of interest may not be able to operate within the graph of a time step, the

adjacency tensor cannot function like an unnormalized Markov transition matrix.



How many distinct, underlying temporal networks are
represented in the 5 graphs below? (Anywhere from [1, 5])
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Fig. 2. The figure illustrates five representations of the same temporal network (of the contact sequence type). Panel (a) shows
a node-centric time line, where a horizontal line represents a contact between two connected individual at the time given by
the x-axis. Panel (b) shows a time line of the contacts focusing on links (pairs of individuals). Panel (c) shows a time-stamp
decorated, aggregated graph. The numbers of the links denotes the contacts between the nodes. Panel (d) shows a time-node
graph (where one assumes spreading cannot occur across more than one contact per time step). Three of the 32 time nodes are
labeled. Panel (e) shows a graph sequence representation.



Weighted Graphs

o construct an link-weighted graph where the weight gives a count of the number of contacts

between two nodes

Reachability and influence graphs

o directed, unweighted graph that links i to j if there is a time-respecting path fromito j

o  Can be less useful early in sampling period:

m  Can have 30- 100% of the maximum number N (N - 1) of directed links

Time-Window Graphs

o include all the links present in a time window

o  The very simplest way would be to take this time window as the entire sampling time
Concurrency graphs

o defines links in concurrency graphs as pairs of nodes having contacts both before T_start and

after T_stop






Lossy Ikepresentation

Fig. 3. Panel I%ab) shows an example contact sequence (the

same as in Fig. 2). Panel (b) is the derived reachability graph
at t = 0. Panel (c) shows the time-windowed static graph from
contacts between ¢ = 3 and ¢ = 5. Panel (d) illustrates a link-
turnover graph where there is a link between two nodes if they
had a contact before and will have one again.
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(where t; is the time between the beginning of the spread-
ing and the ¢’th contact, and 7 is a parameter that should
match the time scale of the dynamic process).

Suggestion: Static network defined by sum of exponentially decaying weights



Networlk lopologies



For static networks, there was a huge effort both to measure degree distribution and to model their
emergence

o No such ubiquitous structures for temporal networks yet
Burstiness and inter-event time statistics are important to temporal networks
Inter-event time distribution

o In atime series of events this is the frequency distribution of the time between the events
Generalized Distances

o define the temporal distance T (i, j, t) as the earliest time to reach fromitojona

time-respecting path starting at t

Temporal Coverage Centrality

o fraction of node pairs (j, j ') s.t passing i would not increase the time to reach fromjtoj'
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where d(i, j) is the graph distance. This can straightfor-
wardly be extended to temporal networks as [315,208,23,

139]
-
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A problem with closeness centrality in static networks
which becomes much aggravated for temporal networks
is that there might not be any path between ¢ and some
of the other nodes. A workaround is to average the inverse
distance rather than inverting the average distance [213]
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Controllability, Motifs, and Other Patterns



Assumes a system with in and output terminals connected into a network (think of Neural Nets)
o output from one node is proportional to (or at least a function of) the input
there can be a phase transition in the time scale of the dynamics between a state where the

network is controllable by a a vanishing faction of nodes

patterns to look for in temporal networks are links/subgraphs that do not change as much as others
Motifs
o small subgraph that is overrepresented in a graph compared to in a null model
o temporal patterns involving the links of a triangle within a short time period are common and
important for spreading phenomena
Network Communities
o subgraphs that are densely connected within and sparsely connected to other communities

during a time window.



In other words, at time ¢ one would first run the com-
munity detection algorithm on the static network to de-
compose the nodes V' into communities ¢y, ..., Cn(),¢ SO
that |J,ci+ = V. The next step is to merge communi-
ties at ¢ with overlapping communities at ¢ — 1. There
are many ideas in the literature how to do that. Ref. [85]
maps the indices of ¢ to the indices of ¢ — 1 so that the
sum of mismatching indices is minimized. This approach



Mesoscale Structures: Conmmunity Detection
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where ¢; and ¢y are two communities at two different
times t and t’. The idea of the exponential factor is to de-
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lemporal Network Manipulation



With randomization, one can see how much faster or slower the spreading becomes because of the
specific network structure isolated from the temporal structure
study effects of correlations in the real data set without having to make an exhaustive list of the
correlations (think data augmentation)
Shuffled Time Stamps
o causes burstiness to decrease (clusters in points of time)
Random Link Shuffling
o This randomization procedure destroys all network topological structures except the degree
sequence of the original graph (of accumulated contacts)
Time Reversal
o  Time runs backwards

best methodology for randomization is be to build a sequence of gradually more random ensembles



1. Iterate through the contacts. Let ¢+ be the current con-
tact.

2. Take a random row j.
3. Swap the time stamps of rows 7 and j.



— Fig. 4. Illustrating the shuffled-time-stamps scheme to ran-

———+ =+ & domize temporal networks. Panel (a) shows the original net-
S S work from Fig. 2| Panel (b) shows how the randomization
o scheme operates on a contact-list representation of the data.

In panel (c) we see the result as a nodal time-line plot. In
panel (d), we see the effect of this type of randomization for
susceptible-infectious (SI) spreading with 100% infection rate.
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The plot shows the average number of infectious nodes I as
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1 — 1t a function of time since the beginning of the data set t. The

A — data comes from Ref. [247]| and one can conclude that the or-
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44 o up the spreading. In panel (e), we see a corresponding plot
. _ 08 for mobile phone data from Ref. [132] where the conclusion is
0s e the opposite—spreading is slowed down, in the data, by the
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. Pick an link (7, 7) (sequentially) from the list of links.
. Pick another link (i’, ") randomly.
. With equal probability replace (4, 7) and (', j') by (3, j')

and (¢, j), or by (i,i') and (j,5").
If the move in the previous step created a self-link or
multiple link, then undo it and start over from step 2.

. Go to step 1.



lemporal Network Generators






. Construct a simple graph by first generating a multi-
graph by the configuration model [207], then removing
duplicated links and self-links.

. For every link, generate an active interval (when con-
tacts can happen) from some distribution. Ref. [103]
uses a truncated power-law for the duration of the ac-
tive interval, and a uniformly random starting time
within a sampling time frame.

. Generate a sequence of contact times following some
(bursty or not) interevent time distribution.

. Wrap the contact time sequence onto the active in-
tervals of the links. In other words, first rescale the
sequence to the total time of the active intervals, then
cut it in the same durations as the active intervals, and
assign it to them.



Fig. 5. Illustrating a simple generative model for temporal net-
works, used in Ref. [103] and (almost) in Ref. [243]. First one
generates a static network (technically a multigraph) from the
configuration model by (a) drawing degrees from a probability
distribution and (b) matching them up in random pairs. Then
one generates active intervals for the links (also randomly, in
this case all links being active the same duration), (c). Finally
one generates a time series of interevent times from a probabil-
ity distribution (d) and rescales it and matches it to the active
intervals.
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1. Increase the time counter to ¢t and let G; be empty.

2. For every node 7, make it active with a probability
a;At. Connect 7 to m other randomly chosen distinct
nodes (active or not). Ref. [223] uses a truncated power-
law distribution for a;.



Starnini et al. [271] developed a model of temporal face-to-
face networks. This is naturally a spatiotemporal network.
Technically, their model is a two-dimensional random walk
model where there the chance of walking closer to a node
¢ is proportional to an increasing attractiveness a;. The
more attracted a walker is to its neighbors, the slower its
walk becomes. Finally, they also model the agents as hav-
ing active and inactive periods that they transfer between
with the same probability every time step. The authors
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where ¢ is an exponentially decreasing memory kernel
(zero for negative arguments to respect causality) and v is
a basal event rate. Even with an exponentially decreasing



Applications.: Common Dynamic Systents
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Fig. 6. Illustration of three dynamical systems on temporal
networks. Panel (a) shows a susceptible-infectious-recovered
model with a disease duration of 2.5 time steps. The outbreak
starts at node 3 at time 2 and reaches one other node. There is
a potentially contagious event between nodes 3 and 4 at time
4, but in this example chance made it not contagious. Panel
(b) shows a greedy walk starting at node 2 at the beginning
of the sampling period. A greedy walk follows every contact
away from the node where the walker is. Panel (c) illustrates
one of the temporal threshold models studied in Ref. [127]. A
node becomes adopter if it is exposed to (i.e. in contact with
an adopter) more than twice within a backward time window
of 2.5 time units.



Walks
o Usually the decision process has a random component, making it a random walk
Epidemic Models
o  One interesting version of this is the vaccination problem—imagine you can immunize (or in
other ways lower the impact with respect to spreading) a fraction f of a population,
o  Then how would you chose them?
Opinion and information spreading
o These assume that an individual adopts an idea when the exposure is over a threshold
o older influence matters <<< newer, so one has to decide how to down- weigh older contacts
o  Counting contacts only within a moving window
Other Potential Applications:
o  Percolation, Synchronization in brain networks, Evolutionary games / game theory



Temporal Networilc 11eory

An Introduction into ey Concepis

Contact:
COS 597C: Theory of Natural Algorithms Shivam Kak | 6307700880 | sk3686@princeton.edu Prof. Bernard Chazelle



