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Genetic Algorithms Overview



Constrained/Unconstrained optimization method based on genetic reproduction of features
Representations:
o  Chromosome: bitstring where each bit represents a feature
=  For bitstring of length M, with N variations per feature, total of NM chromosomes
o  Genotype: set of a given individual’s chromosome (can have multiple chromosomes for
modularity of features)
o  Phenotype: Physical representation of genotype
o Fitness function: Assign a unique ordering to each element in the set of all chromosomes X.
For each x € X, calculate function f(x), i.e. f(x) = xA2, f(x) = x, etc
o  Variation Operators:
n Recombination: Select two children A, B from mating pool,
and an arbitrary number 0 <y < len(bitstring). Cross A, B at y to create new bitstring

=  Mutation: randomly distort parents in mating pool if fitness function of pool stagnates
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Genetic Algorithns: Overview
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Figure 4. Crossover and mutation.
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1) Randomly initialize populations p

2) Determine fitness of population

o (apply fitness function on each individual)

3) Until convergence repeat:

Select parents from population
Crossover and generate new population
Perform mutation on new population

Calculate fitness for new population
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Introduction to. NEAT



e Neuroevolution: artificial evolution of neural networks via genetic algorithms
e Network parameters are selected via “survival of the fittest” convergence rather than maximization

of a value function
e Becomes useful is high-dimensional / continuous state space where value function is not easily

defined (as opposed to sampling from a distribution for example)

connection weights are not the only aspect of neural networks that
contribute to their behavior. The topology, or structure, of neural

networks also affects their functionality.
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e NEAT: NeuroEvolution of Augmenting Topologies
e designed to take advantage of structure as a way of minimizing the dimensionality of the search

space of connection weights.
Considerations when performing genetic algorithms on both weight features and topology features:

Is there a genetic representation that allows disparate topologies to cross over in meaningful ways?
2. How can topological innovation that needs several generations to be optimized be protected so
that it does not disappear from the population prematurely?

3. How can topologies be minimized throughout the evolution process with a fitness function that

assesses complexity of the topology?
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[ntroduction to NEAT
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e Solutions to Permutation Problem:
o If unaddressed will eliminate a large portion of possible offspring
o Goal: assigning an ordering to all possible crossovers, to ensure that only matching genes

are crosses (i.e. A with A, B with B, etc)
Solution in Nature: homology

e two genes are homologous if they are alleles of the same trait
e l.e.E. coli: in a process called synapsis, a special protein called RecA goes through and lines up

homologous genes between two genomes before crossover occurs
Solution in NEAT

e Artificial synapsis via “historical marking” (more on this later)
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n nature, different structures tend to be in different
species that compete in different niches. Thus,
innovation is implicitly protected within a niche”
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Figure 6: Fitting a multi-modal distribution
over actions with a uni-modal policy can re-
sult in selecting actions that rarely occur in
the data.
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Separating network architectures into distinct species allows for optimizations of different
structures without competing with the general population (Speciation)
Commonly applied to multimodal function optimization

o Helps address issues of Implicit Smoothing

o  Other approaches: Gaussian mixture models, discretization/softmax
REQUIREMENT:

o How do you determine whether two individuals

are members of the same species?
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e Historical origin of a gene can reveal which genes match between any individuals in a topologically

diverse population
e A NE algorithm must maintain a global counter and assign a unique number to each new gene

e Two genes with the same historical origin must represent the same structure

e Innovation numbers are never changed for a given gene [:uun tE r
JS ST,

What about disjoint matchings?
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How does this correlate to speciation?

e Idea: separate populations into species by similar topology (topology matching)

e Extension: largely disjoint/excess genes between genotypes signals differing species
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e Explicit Fitness Sharing:
o  Organisms in the same species must share the fitness of their niche
o Species cannot afford to become too big - thus unlikely to take over entire population

o Compute fitness scaled by distance to genotype species cluster
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How does this correlate to speciation?

e Explicit Fitness Sharing:

o

o

o

Organisms in the same species must share the fitness of their niche
Species cannot afford to become too big - thus unlikely to take over entire population

Compute fitness scaled by distance to genotype species cluster
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e Sharing function sh(d(i, j)) defined as indicator - takes value of 1 if distance between genotype i and

j is less than a hyperparameter threshold, O else
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IEAT = Variations + Analvsis

Method

Evaluations

Failure Rate

No-Growth NEAT (Fixed-Topologies)

30,239

80% |

Nonspeciated NEAT

25,600

25%

‘Initial Random NEAT

23,033

Nonmating NEAT

Full NEAT

5,557

3,600

5% |
0]
-
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Variations on NEAT
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Figure 4: Example of structural comparison of ANNs
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Semantic and Structural Speciation (SSS):

e Instead of a topological comparison for determining speciation, searches for explicitly shared
connections since a strict ordering of nodes is achievable with ALF: tarou

o  Counting the shared connections Eshared and maximum connections Emax | =
Dynamic Adaptation of Population (DAP):

e In addition, each species is assigned an age Asi , which identifies how many generations this very

species has been in the population.
Fitness-Based Genetic Operators (FBGO):

e A fitness-based mutation rate is calculated for all mutations, which determines how often ALF
attempts to perform a respective mutation (mutation or crossover

e The fitter an individual is, the smaller changes are made
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Figure 6. Alternative substrate configurations. This figure shows (a) the original grid configuration introduced in Figure 4,
(b) a three-dimensional configuration of nodes centered at (0, 0, 0), (c) a state-space sandwich configuration in which a
source sheet of neurons connects directly to a target sheet, and (d) a circular configuration. Different configurations are
likely suited to problems with different geometric properties.
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Link to a thorough guide on
all NEAT variations to—date (As of Spring 2021):

https://direct.mit.edu/evco/article/29/1/1/97341/A-Systematic-Literature-Review-of-the-Successors
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Application of NeuroEvolution for- VL
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Figure 6: TOP: Comparison of the final model accuracy
in five different contexts, from left to right: G-CIFAR/SP-
I. G-CIFAR/SP-II, G-CIFAR/SP-III, MNIST/SP-I and G-
ImageNet/SP-1. Each circle marks the top test accuracy at
the end of one experiment. BOTTOM: Search progress of
the experiments in the case of G-CIFAR/SP-II (LEFT, best
for RL) and G-CIFAR/SP-III (RIGHT, best for evolution).
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Table 2: ImageNet classification results for AmoebaNet-A compared to hand-designs (top rows) and other automated methods
(middle rows). The evolved AmoebaNet-A architecture (bottom rows) reaches the current state of the art (SOTA) at similar
model sizes and sets a new SOTA at a larger size. All evolution-based approaches are marked with a *. We omitted Squeeze-
and-Excite-Net because it was not benchmarked on the same ImageNet dataset version.

Model # Parameters  # Multiply-Adds  Top-1/ Top-5 Accuracy (%)
Incep-ResNet V2 [44] 55.8M 13.2B 80.4/95.3
ResNeXt-101 [48] 83.6M 31.5B 80.9/95.6
PolyNet [51] 92.0M 34.7B 81.3/95.8
Dual-Path-Net-131 [7] 79.5M 32.0B 81.5/95.8
GeNet-2 [47]* 156M - 72.1/904
Block-QNN-B [52]* - - 75.7192.6
Hierarchical [30]" 64M - 79.7/94.8
NASNet-A [54] 88.9M 23.8B 82.7/96.2
PNASNet-5 [29] 86.1M 25.0B 82.9/96.2
AmoebaNet-A (N=6, F=190)" 86.7M 23.1B 82.8/96.1
AmoebaNet-A (N=6, F=448)* 465M 104B 83.9/96.6
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EVOJAX
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Examples

Input:
Policy:
Output: o i
Compare
with ground
truth
Utility: Loss = 0.03

object pose,
joint angles,
joint velocities

v

robot commands

Pick-up success
rate = 0.8

primitive operators,
hyper-parameters

DNN1, DNN2, ...

'

Apply the DNNs
to the task they
are designed for

Performance of the
DNNs in the task
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Cases

Policy

Task and Utility

well-behaved system?

Image
classification

A differentiable Convolutional
Neural Network (CNN)

The task compares the policy’s
prediction with the ground-truth
class labels.

Yes.

(Case A)

The utility is the classification

accuracy or the negative

cross-entropy loss
Robotic A differentiable fully The task applies the policy’s No. The complex physics
manipulation connected DNN (MLP) command output to the robot dynamics makes the utility

function a blackbox.

(Case B) The utility evaluates the metrics

such as object pick-up success

rate
NAS A rule-based system, a DNN The task applies the generated | No. The NAS system or the

model, or other types of DNNs generated DNNs may not be

(Case B, C) model that generates DNNs differentiable, and the utility

of different architectures.

The utility reports back their
performances.

function can be a blackbox too.
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“OK, neuroevolution sounds cool. But why don't we
see many use cases of the technology in the industry
yvet? The largest blocker was that the evolution
strategies take too much computing power.”
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Next steps.

Look at gifs of EvoJAX performance on blog/github
1ry it yourself!
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