Three Steps: ML Production Framework | Core Concepts | Relevant Algorithms

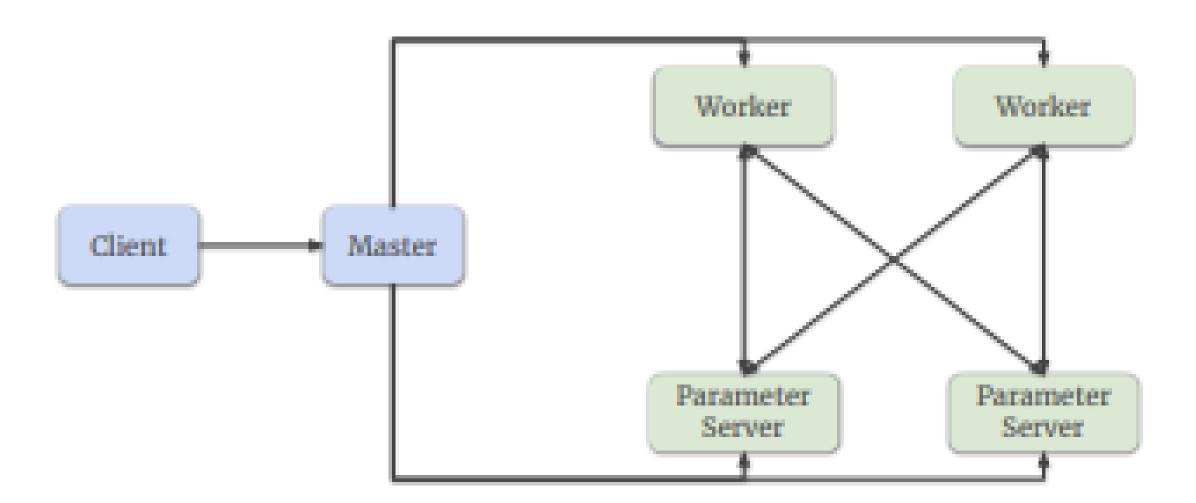
Stage One: ML Production Framework

Deep Learning Framework for Real Time Recommendation Systems: https://arxiv.org/pdf/2209.07663

- Issues with using existing DL frameworks i.e. Pytorch/Tensorflow:
 - static parameters are not ideal for recommendation systems with dynamic features
 - o platforms such as TikTok gain ~30 million videos daily, upon which recommender must be retrained
- Pytorch is designed with batch training separated from serving stage
 - Not ideal for real-time interaction with customers (RLHF)
- Issues Addressed by MONOLITH:
 - o designed for **online** training of recommendation system
 - high fault-tolerance (collisionless embedding table)
 - Addresses non-stationary distribution of training data (Concept Drift)
 - Size of embedding table scales with users and ranked videos
 - Challenges the assumption that low-collision hashing for embedding table is harmless to model quality

Deep Learning Framework for Real Time Recommendation Systems

• Monolith architecture designed off of TensorFlow's distributed worker system:



Deep Learning Framework for Real Time Recommendation Systems

• Monolith architecture designed off of TensorFlow's distributed worker system:

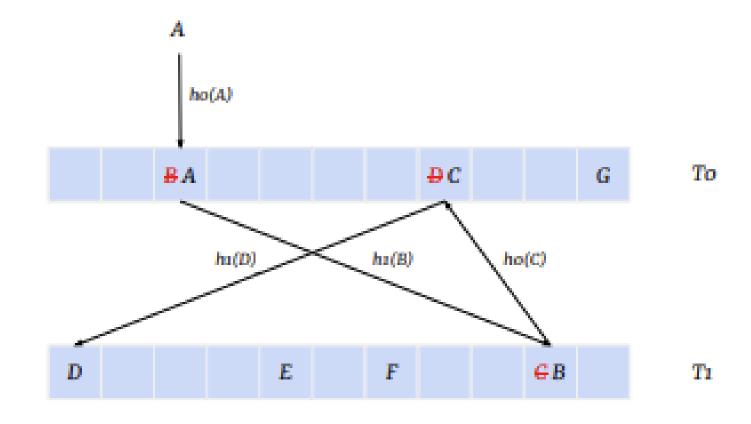
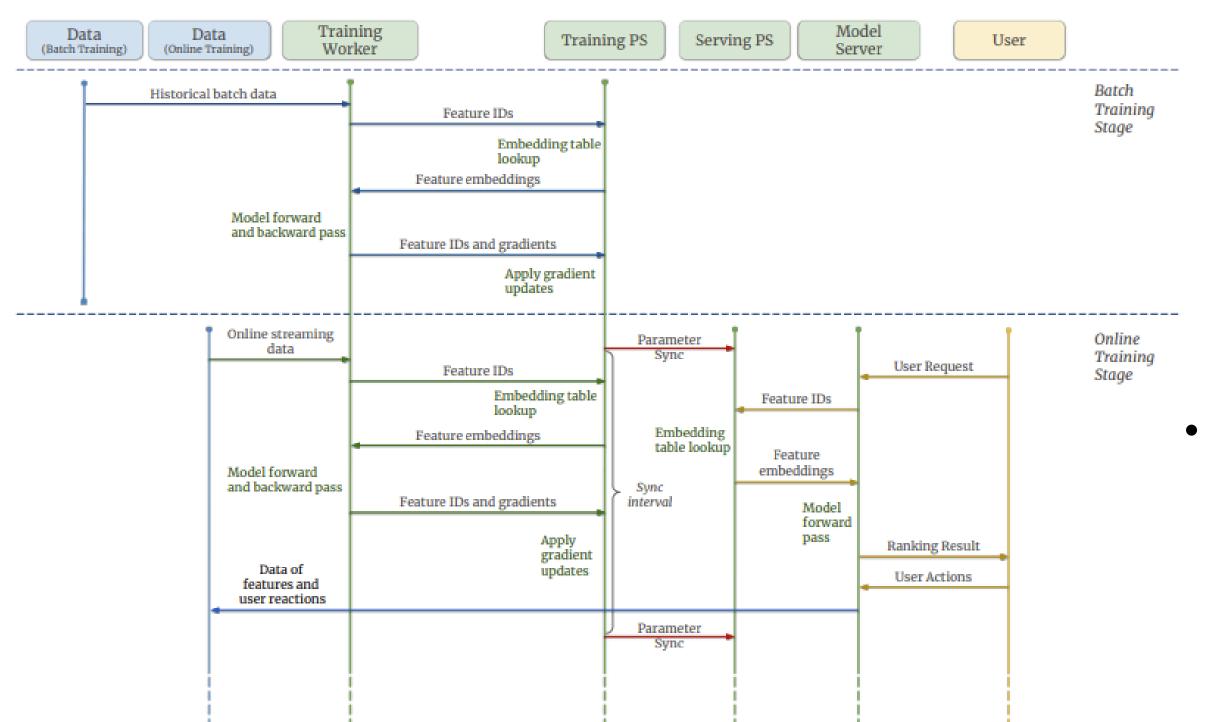


Figure 3: Cuckoo HashMap.

- Cuckoo hashing addresses issue of ID collision associated with Tensorflow
- Rehashes keys with a suite of hashing functions till elements stabilize
- Memory Footprint Reduction:
 - o tunable expiry parameter for all IDs
 - Removal of IDs with low occurrence
 - (how old / relevant is this content)

Deep Learning Framework for Real Time Recommendation Systems



- Cuckoo hashing addresses issue of ID collision associated with Tensorflow
- Rehashes keys with a suite of hashing functions till elements stabilize

• Memory Footprint Reduction:

- o tunable expiry parameter for all IDs
- Removal of IDs with low occurrence
- (how old / relevant is this content)

Deep Learning Framework for Real Time Recommendation Systems

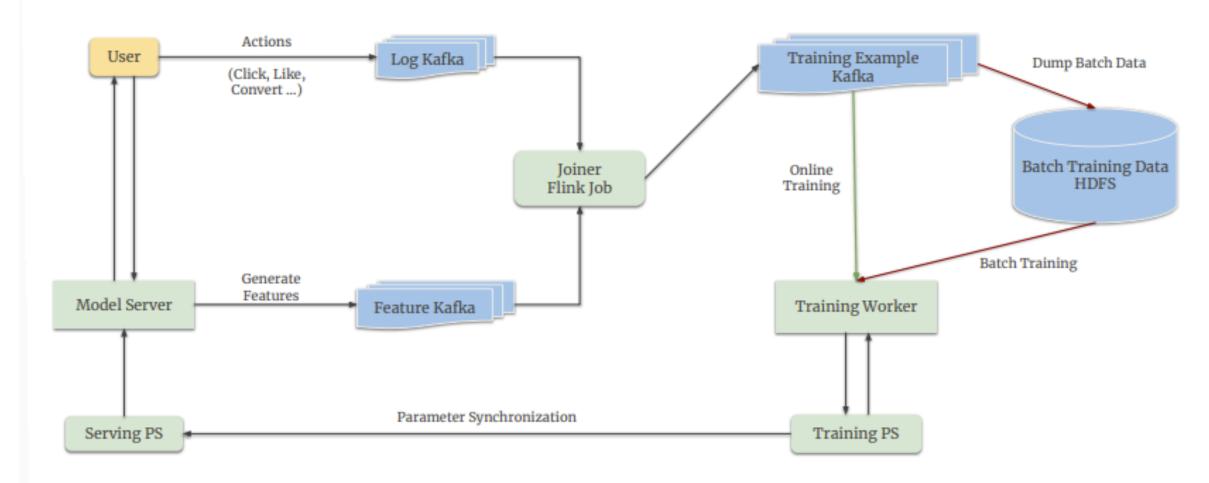


Figure 4: Streaming Engine.

The information feedback loop from [User \rightarrow Model Server \rightarrow Training Worker \rightarrow Model Server \rightarrow User] would spend a long time when taking the Batch Training path, while the Online Training will close the loop more instantly.

• Streaming Engine:

- designed for seamless switch
 between online and offline training
- Makes use of various open-source fault-tolerant distributed computation libraries:
 - Apache Kafka
 - Apache Flink
 - Apache Hadoop

Deep Learning Framework for Real Time Recommendation Systems

• Performance Considerations:

- model quality suffers when parameters acquired from online training are not routinely used to update the actual, deployed model users experience
 - Synchronization steps can involve TB level data transfer
 - Total accuracy vs. network bandwidth

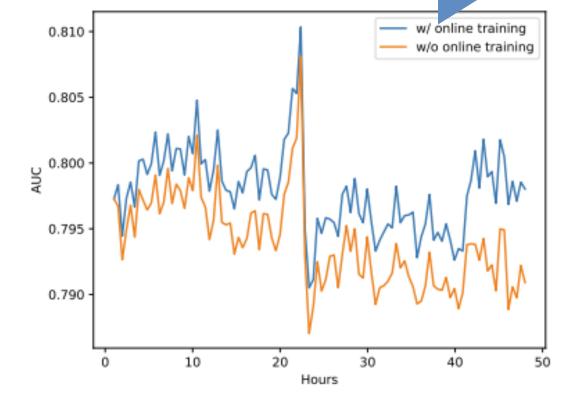
• Parameter Synchronization:

- o update process may be long, and client service must not stop during this process
- o synchronization schedules may be different for sparse vs. dense parameters
- Current recommend synchronization:
 - 1/day for dense parameters
 - 1/minute for sparse parameters (or as much as computation overhead can handle)

Deep Learning Framework for Real Time Recommendation Systems

• Note: decreased performance gap between online training and offline training as synchronization frequency between training PS and PS servers is increased for parameters

Sync Interval 5 hr Sync Interval 1 hr Sync Interval 30 min



(c) Online training with 30 min sync interval

Stage Two: Core Concepts

Stage Two: Core Concepts

- Satiation dynamics for multi-arm contextual bandit: rebounding bandits
 - https://arxiv.org/pdf/2011.06741
 - Models a more natural decay in bandit selection over time
- Real-time bidding mechanisms for recommendation systems:
 - Facebook Al Research
 - Utilizes a contextual bandit to solve Bidding and Ranking Together (BART)
 - General assumption: outcome for one user session has no consequence on future
- Assumptions on Human Preferences in Multi-armed Bandits (MAB)
 - https://dl.acm.org/doi/pdf/10.1145/3544548.3580670
 - Provides a flexible framework for experimental A/B testing of MAB algorithms with humans
- Deep factorization models for CTR (click-through rate) Prediction
 - https://arxiv.org/pdf/1703.04247
 - Matrix factorization model used to learn feature interactions (high & low level)

Stage Two: Core Concepts

- Deep factorization models for CTR (click-through rate) Prediction
 - https://arxiv.org/pdf/1703.04247
 - Matrix factorization model used to learn feature interactions (high & low level)

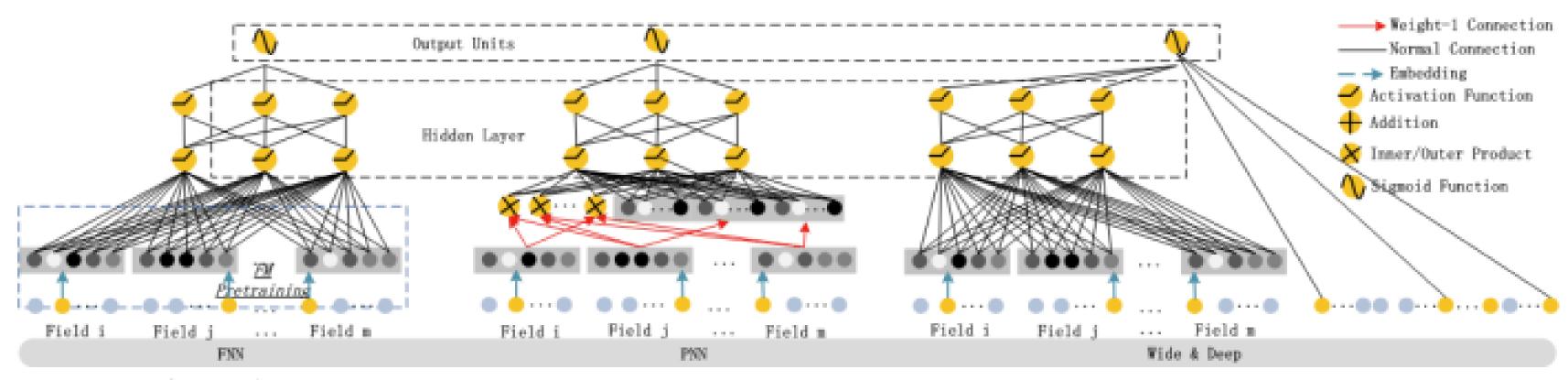


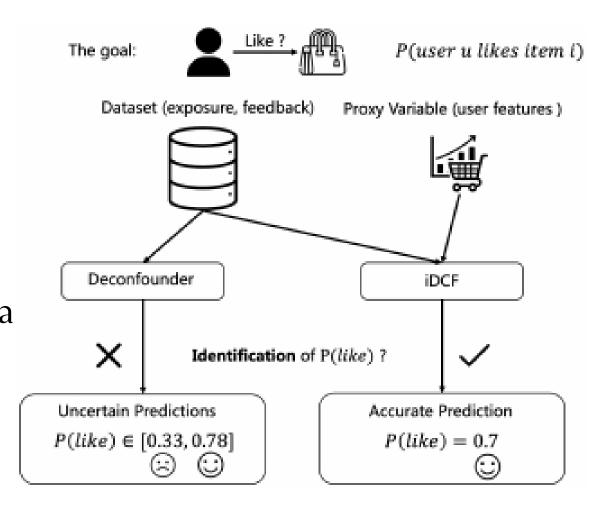
Figure 5: The architectures of existing deep models for CTR prediction: FNN, PNN, Wide & Deep Model

Stage Three: State of the Art in Recommendation Algorithms, from Bytedance and Broader Community

Recent Publications from Bytedance Research Team

Stage Three: State of the Art in Recommendation Algorithms

- Debiasing Recommendation by Learning Identifiable Latent Confounders (2023)
 - https://arxiv.org/pdf/2302.05052
- Disentangled representation for diversified recommendations (2023)
 - https://arxiv.org/pdf/2301.05492
- Confidence-aware Fine-tuning of Sequential Recommendation Systems via Conformal Prediction (2024)
 - Google Scholar link



- SMLP4Rec: An Efficient all-MLP Architecture for Sequential Recommendations (2024)
 - Google Scholar link

Recent Publications from Bytedance Research Team

Stage Three: State of the Art in Recommendation Algorithms

- Embedding in Recommender Systems: A Survey (2023)
 - Google Scholar Link
- Graph-Based Model-Agnostic Data Subsampling for Recommendation Systems (2023)
 - Google Scholar Link

Recent Publications in Broader Research Community

Stage Three: State of the Art in Recommendation Algorithms

- Ranking Enhanced Fine-Grained Contrastive Learning for Recommendation (2024)
 - https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10446207
- MCRPL: A Pretrain, Prompt, and Fine-tune Paradigm for Non-overlapping Many-to-one Cross-domain Recommendation (2024)
 - https://dl.acm.org/doi/pdf/10.1145/3641860
- Entire Chain Uplift Modeling with Context-Enhanced Learning for Intelligent Marketing (2024)
 - https://arxiv.org/abs/2402.03379
- Point-of-interest Recommendation using Deep Semantic Model (2023)
 - https://dl.acm.org/doi/10.1016/j.eswa.2023.120727