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Deep Dive on Monolith from ByteDance

Deep Learning Framework for Real Time Recommendation Systems : https.//arxiv.org/pdi/2209.07663

e [ssues with using existing DL frameworks i.e. Pytorch/Tensorflow:
o static parameters are not ideal for recommendation systems with dynamic features
o platforms such as TikTok gain ~30 million videos daily, upon which recommender must be retrained

e Pytorch is designed with batch training separated from serving stage
o Not ideal for real-time interaction with customers (RLHF)

e Issues Addressed by MONOLITH:
o designed for online training of recommendation system
o high fault-tolerance (collisionless embedding table)
o Addresses non-stationary distribution of training data (Concept Drift)
o Size of embedding table scales with users and ranked videos

o Challenges the assumption that low-collision hashing for
embedding table is harmless to model quality


https://arxiv.org/pdf/2209.07663

Deep Dive on Monolith from ByteDance

Deep Learning Framework for Real Time Recommendation Systems

e Monolith architecture designed off of TensorFlow’s distributed worker system:

*
Worker Wiarker
Clent s— hadier
Parameler Pararmeler
SETVED CaTVeT
# +




Deep Dive on Monolith from ByteDance

Deep Learning Framework for Real Time Recommendation Systems

e Monolith architecture designed off of TensorFlow’s distributed worker system:

o o Cuckoo hashing addresses issue of 1D
collision associated with Tensorflow

G To o Rehashes keys with a suite of hashing
functions till elements stabilize

e Memory Footprint Reduction:
o tunable expiry parameter for all IDs
o Removal of IDs with low occurrence
o (how old / relevant is this content)

Th

Figure 3: Cuckoo HashMap.
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Deep Learning Framework for Real Time Recommendation Systems
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Deep Learning Framework for Real Time Recommendation Systems
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Figure 4: Streaming Engine.
The information feedback loop from [User — Model Server — Training Worker — Model Server — User| would spend a long time when taking the Batch Training
path, while the Online Training will close the loop more instantly.
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Deep Learning Framework for Real Time Recommendation Systems

e Performance Considerations:
o model quality suffers when parameters acquired from online training are not routinely used to update
the actual, deployed model users experience
= Synchronization steps can involve TB level data transfer
= Total accuracy vs. network bandwidth

e Parameter Synchronization:
o update process may be long, and client service must not stop during this process
o synchronization schedules may be different for sparse vs. dense parameters
o Current recommend synchronization:
= ]/day for dense parameters
= |/minute for sparse parameters (or as much as computation overhead can handle)



Deep Dive on Monolith from ByteDance

Deep Learning Framework for Real Time Recommendation Systems

AUC

e Note: decreased performance gap between online training
and offline training as synchronization frequency
between training PS and PS servers is increased for
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Stage 'Two: Core Concepts

e Satiation dynamics for multi-arm contextual bandit: rebounding bandits
o https://arxiv.org/pdi/2011.06741
o Models a more natural decay in bandit selection over time

e Real-time bidding mechanisms for recommendation systems:
o Facebook Al Research
o Utilizes a contextual bandit to solve Bidding and Ranking Together (BART)
o General assumption: outcome for one user session has no consequence on future

e Assumptions on Human Preferences in Multi-armed Bandits (MAB)
o https://dl.acm.org/doi/pdi/10.1145/3544548.3580670
o Provides a flexible framework for experimental A/B testing of MAB algorithms with humans

e Deep factorization models for CTR (click-through rate) Prediction
o https://arxiv.org/pdf/1703.04247
o Matrix factorization model used to learn feature interactions (high & low level)



https://scontent-lga3-2.xx.fbcdn.net/v/t39.2365-6/416957436_750592696922129_2758185927410595191_n.pdf?_nc_cat=100&ccb=1-7&_nc_sid=3c67a6&_nc_ohc=fnlpagBy3HYQ7kNvgFFplUL&_nc_ht=scontent-lga3-2.xx&oh=00_AfC4Lton8fbAa5KSiaehL2o_jH4PapRHtnXq-8GKrgH91A&oe=663AED4A
https://dl.acm.org/doi/pdf/10.1145/3544548.3580670
https://dl.acm.org/doi/pdf/10.1145/3544548.3580670
https://arxiv.org/pdf/1703.04247
https://arxiv.org/pdf/1703.04247

Deep Dive on Recommendation Algorithms
Stage 'Two: Core Concepts

e Deep factorization models for CTR (click-through rate) Prediction

o https://arxiv.org/pdf/1703.04247
o Matrix factorization model used to learn feature interactions (high & low level)
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Figure 5: The architectures of existing deep models for CTR prediction: FNN, PNN, Wide & Deep Model
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Stage Three: State of the Artin Recommendation Algorithms, from Bytedance and Broader Community



Recent Publications from Bytedance Research Team

Stage Three: State of the Art in Recommendation Algorithms

e Debiasing Recommendation by Learning Identifiable Latent Confounders (2023)
o htps://arxiv.org/pdi/2302.05052

ike 7
The goal: . Lﬁ] P(user u likes item [)

Dataset (exposure, feedback]  Proxy Varable (user features )

e Disentangled representation for diversified recommendations (2023) -
4] |
o htps://arxiv.org/pdi/2301.05492 :
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e SMLP4Rec: An Efficient all-MLP Architecture for Sequential Recommendations (2024)
o Google Scholar link



https://arxiv.org/pdf/2302.05052
https://arxiv.org/pdf/2301.05492
https://arxiv.org/pdf/2301.05492
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=8Nuj8NwAAAAJ&sortby=pubdate&citation_for_view=8Nuj8NwAAAAJ:OcBU2YAGkTUC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=8Nuj8NwAAAAJ&sortby=pubdate&citation_for_view=8Nuj8NwAAAAJ:HtS1dXgVpQUC

Recent Publications from Bytedance Research Team

Stage Three: State of the Art in Recommendation Algorithms

e Embedding in Recommender Systems: A Survey (2023)
o Google Scholar Link

e Graph-Based Model-Agnostic Data Subsampling for Recommendation Systems (2023)
o Google Scholar Link



https://scholar.google.com/citations?view_op=view_citation&hl=en&user=8Nuj8NwAAAAJ&sortby=pubdate&citation_for_view=8Nuj8NwAAAAJ:dBIO0h50nwkC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=8Nuj8NwAAAAJ&cstart=20&pagesize=80&sortby=pubdate&citation_for_view=8Nuj8NwAAAAJ:sNmaIFBj_lkC

Recent Publications in Broader Research Community

Stage Three: State of the Art in Recommendation Algorithms

e Ranking Enhanced Fine-Grained Contrastive Learning for Recommendation (2024)
o https://ieeexplore.ieee.org/stamp/stamp.jsptp=&arnumber=10446207

e MCRPL: A Pretrain, Prompt, and Fine-tune Paradigm for Non-overlapping Many-to-one Cross-
domain Recommendation (2024)
o hteps://dl.acm.org/doi/pdi/10.1145/3641860

e Entire Chain Uplift Modeling with Context-Enhanced Learning for Intelligent Marketing (2024)
o https://arxiv.org/abs/2402.03379

e Point-of-interest Recommendation using Deep Semantic Model (2023)
o https://dl.acm.org/doi/10.1016/j.eswa.2023.120727



https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10446207
https://dl.acm.org/doi/pdf/10.1145/3641860
https://arxiv.org/abs/2402.03379
https://dl.acm.org/doi/10.1016/j.eswa.2023.120727

